Metamath Proof Explorer


Theorem precsexlem10

Description: Lemma for surreal reciprocal. Show that the union of the left sets is less than the union of the right sets. Note that this is the first theorem in the surreal numbers to require the axiom of infinity. (Contributed by Scott Fenton, 15-Mar-2025)

Ref Expression
Hypotheses precsexlem.1 No typesetting found for |- F = rec ( ( p e. _V |-> [_ ( 1st ` p ) / l ]_ [_ ( 2nd ` p ) / r ]_ <. ( l u. ( { a | E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s . ) , <. { 0s } , (/) >. ) with typecode |-
precsexlem.2 L=1stF
precsexlem.3 R=2ndF
precsexlem.4 φANo
precsexlem.5 No typesetting found for |- ( ph -> 0s
precsexlem.6 No typesetting found for |- ( ph -> A. xO e. ( ( _Left ` A ) u. ( _Right ` A ) ) ( 0s E. y e. No ( xO x.s y ) = 1s ) ) with typecode |-
Assertion precsexlem10 φLωsRω

Proof

Step Hyp Ref Expression
1 precsexlem.1 Could not format F = rec ( ( p e. _V |-> [_ ( 1st ` p ) / l ]_ [_ ( 2nd ` p ) / r ]_ <. ( l u. ( { a | E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s . ) , <. { 0s } , (/) >. ) : No typesetting found for |- F = rec ( ( p e. _V |-> [_ ( 1st ` p ) / l ]_ [_ ( 2nd ` p ) / r ]_ <. ( l u. ( { a | E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s . ) , <. { 0s } , (/) >. ) with typecode |-
2 precsexlem.2 L=1stF
3 precsexlem.3 R=2ndF
4 precsexlem.4 φANo
5 precsexlem.5 Could not format ( ph -> 0s 0s
6 precsexlem.6 Could not format ( ph -> A. xO e. ( ( _Left ` A ) u. ( _Right ` A ) ) ( 0s E. y e. No ( xO x.s y ) = 1s ) ) : No typesetting found for |- ( ph -> A. xO e. ( ( _Left ` A ) u. ( _Right ` A ) ) ( 0s E. y e. No ( xO x.s y ) = 1s ) ) with typecode |-
7 fo1st 1st:VontoV
8 fofun 1st:VontoVFun1st
9 7 8 ax-mp Fun1st
10 rdgfun Could not format Fun rec ( ( p e. _V |-> [_ ( 1st ` p ) / l ]_ [_ ( 2nd ` p ) / r ]_ <. ( l u. ( { a | E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s . ) , <. { 0s } , (/) >. ) : No typesetting found for |- Fun rec ( ( p e. _V |-> [_ ( 1st ` p ) / l ]_ [_ ( 2nd ` p ) / r ]_ <. ( l u. ( { a | E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s . ) , <. { 0s } , (/) >. ) with typecode |-
11 1 funeqi Could not format ( Fun F <-> Fun rec ( ( p e. _V |-> [_ ( 1st ` p ) / l ]_ [_ ( 2nd ` p ) / r ]_ <. ( l u. ( { a | E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s . ) , <. { 0s } , (/) >. ) ) : No typesetting found for |- ( Fun F <-> Fun rec ( ( p e. _V |-> [_ ( 1st ` p ) / l ]_ [_ ( 2nd ` p ) / r ]_ <. ( l u. ( { a | E. xR e. ( _Right ` A ) E. yL e. l a = ( ( 1s +s ( ( xR -s A ) x.s yL ) ) /su xR ) } u. { a | E. xL e. { x e. ( _Left ` A ) | 0s . ) , <. { 0s } , (/) >. ) ) with typecode |-
12 10 11 mpbir FunF
13 funco Fun1stFunFFun1stF
14 9 12 13 mp2an Fun1stF
15 2 funeqi FunLFun1stF
16 14 15 mpbir FunL
17 dcomex ωV
18 17 funimaex FunLLωV
19 16 18 ax-mp LωV
20 19 uniex LωV
21 20 a1i φLωV
22 fo2nd 2nd:VontoV
23 fofun 2nd:VontoVFun2nd
24 22 23 ax-mp Fun2nd
25 funco Fun2ndFunFFun2ndF
26 24 12 25 mp2an Fun2ndF
27 3 funeqi FunRFun2ndF
28 26 27 mpbir FunR
29 17 funimaex FunRRωV
30 28 29 ax-mp RωV
31 30 uniex RωV
32 31 a1i φRωV
33 funiunfv FunLiωLi=Lω
34 16 33 ax-mp iωLi=Lω
35 1 2 3 4 5 6 precsexlem8 φiωLiNoRiNo
36 35 simpld φiωLiNo
37 36 iunssd φiωLiNo
38 34 37 eqsstrrid φLωNo
39 funiunfv FunRiωRi=Rω
40 28 39 ax-mp iωRi=Rω
41 35 simprd φiωRiNo
42 41 iunssd φiωRiNo
43 40 42 eqsstrrid φRωNo
44 34 eleq2i biωLibLω
45 eliun biωLiiωbLi
46 44 45 bitr3i bLωiωbLi
47 funiunfv FunRjωRj=Rω
48 28 47 ax-mp jωRj=Rω
49 48 eleq2i cjωRjcRω
50 eliun cjωRjjωcRj
51 49 50 bitr3i cRωjωcRj
52 46 51 anbi12i bLωcRωiωbLijωcRj
53 reeanv iωjωbLicRjiωbLijωcRj
54 52 53 bitr4i bLωcRωiωjωbLicRj
55 omun iωjωijω
56 ssun1 iij
57 1 2 3 precsexlem6 iωijωiijLiLij
58 56 57 mp3an3 iωijωLiLij
59 55 58 syldan iωjωLiLij
60 59 adantl φiωjωLiLij
61 60 sseld φiωjωbLibLij
62 simpr iωjωjω
63 ssun2 jij
64 1 2 3 precsexlem7 jωijωjijRjRij
65 63 64 mp3an3 jωijωRjRij
66 62 55 65 syl2anc iωjωRjRij
67 66 sseld iωjωcRjcRij
68 67 adantl φiωjωcRjcRij
69 4 ad2antrr φijωbLijcRijANo
70 1 2 3 4 5 6 precsexlem8 φijωLijNoRijNo
71 70 simpld φijωLijNo
72 71 sselda φijωbLijbNo
73 72 adantrr φijωbLijcRijbNo
74 69 73 mulscld Could not format ( ( ( ph /\ ( i u. j ) e. _om ) /\ ( b e. ( L ` ( i u. j ) ) /\ c e. ( R ` ( i u. j ) ) ) ) -> ( A x.s b ) e. No ) : No typesetting found for |- ( ( ( ph /\ ( i u. j ) e. _om ) /\ ( b e. ( L ` ( i u. j ) ) /\ c e. ( R ` ( i u. j ) ) ) ) -> ( A x.s b ) e. No ) with typecode |-
75 70 simprd φijωRijNo
76 75 sselda φijωcRijcNo
77 76 adantrl φijωbLijcRijcNo
78 69 77 mulscld Could not format ( ( ( ph /\ ( i u. j ) e. _om ) /\ ( b e. ( L ` ( i u. j ) ) /\ c e. ( R ` ( i u. j ) ) ) ) -> ( A x.s c ) e. No ) : No typesetting found for |- ( ( ( ph /\ ( i u. j ) e. _om ) /\ ( b e. ( L ` ( i u. j ) ) /\ c e. ( R ` ( i u. j ) ) ) ) -> ( A x.s c ) e. No ) with typecode |-
79 74 78 jca Could not format ( ( ( ph /\ ( i u. j ) e. _om ) /\ ( b e. ( L ` ( i u. j ) ) /\ c e. ( R ` ( i u. j ) ) ) ) -> ( ( A x.s b ) e. No /\ ( A x.s c ) e. No ) ) : No typesetting found for |- ( ( ( ph /\ ( i u. j ) e. _om ) /\ ( b e. ( L ` ( i u. j ) ) /\ c e. ( R ` ( i u. j ) ) ) ) -> ( ( A x.s b ) e. No /\ ( A x.s c ) e. No ) ) with typecode |-
80 1 2 3 4 5 6 precsexlem9 Could not format ( ( ph /\ ( i u. j ) e. _om ) -> ( A. b e. ( L ` ( i u. j ) ) ( A x.s b ) ( A. b e. ( L ` ( i u. j ) ) ( A x.s b )
81 80 simpld Could not format ( ( ph /\ ( i u. j ) e. _om ) -> A. b e. ( L ` ( i u. j ) ) ( A x.s b ) A. b e. ( L ` ( i u. j ) ) ( A x.s b )
82 rsp Could not format ( A. b e. ( L ` ( i u. j ) ) ( A x.s b ) ( b e. ( L ` ( i u. j ) ) -> ( A x.s b ) ( b e. ( L ` ( i u. j ) ) -> ( A x.s b )
83 81 82 syl Could not format ( ( ph /\ ( i u. j ) e. _om ) -> ( b e. ( L ` ( i u. j ) ) -> ( A x.s b ) ( b e. ( L ` ( i u. j ) ) -> ( A x.s b )
84 80 simprd Could not format ( ( ph /\ ( i u. j ) e. _om ) -> A. c e. ( R ` ( i u. j ) ) 1s A. c e. ( R ` ( i u. j ) ) 1s
85 rsp Could not format ( A. c e. ( R ` ( i u. j ) ) 1s ( c e. ( R ` ( i u. j ) ) -> 1s ( c e. ( R ` ( i u. j ) ) -> 1s
86 84 85 syl Could not format ( ( ph /\ ( i u. j ) e. _om ) -> ( c e. ( R ` ( i u. j ) ) -> 1s ( c e. ( R ` ( i u. j ) ) -> 1s
87 83 86 anim12d Could not format ( ( ph /\ ( i u. j ) e. _om ) -> ( ( b e. ( L ` ( i u. j ) ) /\ c e. ( R ` ( i u. j ) ) ) -> ( ( A x.s b ) ( ( b e. ( L ` ( i u. j ) ) /\ c e. ( R ` ( i u. j ) ) ) -> ( ( A x.s b )
88 87 imp Could not format ( ( ( ph /\ ( i u. j ) e. _om ) /\ ( b e. ( L ` ( i u. j ) ) /\ c e. ( R ` ( i u. j ) ) ) ) -> ( ( A x.s b ) ( ( A x.s b )
89 1sno Could not format 1s e. No : No typesetting found for |- 1s e. No with typecode |-
90 slttr Could not format ( ( ( A x.s b ) e. No /\ 1s e. No /\ ( A x.s c ) e. No ) -> ( ( ( A x.s b ) ( A x.s b ) ( ( ( A x.s b ) ( A x.s b )
91 89 90 mp3an2 Could not format ( ( ( A x.s b ) e. No /\ ( A x.s c ) e. No ) -> ( ( ( A x.s b ) ( A x.s b ) ( ( ( A x.s b ) ( A x.s b )
92 79 88 91 sylc Could not format ( ( ( ph /\ ( i u. j ) e. _om ) /\ ( b e. ( L ` ( i u. j ) ) /\ c e. ( R ` ( i u. j ) ) ) ) -> ( A x.s b ) ( A x.s b )
93 5 ad2antrr Could not format ( ( ( ph /\ ( i u. j ) e. _om ) /\ ( b e. ( L ` ( i u. j ) ) /\ c e. ( R ` ( i u. j ) ) ) ) -> 0s 0s
94 73 77 69 93 sltmul2d Could not format ( ( ( ph /\ ( i u. j ) e. _om ) /\ ( b e. ( L ` ( i u. j ) ) /\ c e. ( R ` ( i u. j ) ) ) ) -> ( b ( A x.s b ) ( b ( A x.s b )
95 92 94 mpbird φijωbLijcRijb<sc
96 95 ex φijωbLijcRijb<sc
97 55 96 sylan2 φiωjωbLijcRijb<sc
98 61 68 97 syl2and φiωjωbLicRjb<sc
99 98 rexlimdvva φiωjωbLicRjb<sc
100 54 99 biimtrid φbLωcRωb<sc
101 100 3impib φbLωcRωb<sc
102 21 32 38 43 101 ssltd φLωsRω