| Step |
Hyp |
Ref |
Expression |
| 1 |
|
prjsprel.1 |
|
| 2 |
|
prjspertr.b |
|
| 3 |
|
prjspertr.s |
|
| 4 |
|
prjspertr.x |
|
| 5 |
|
prjspertr.k |
|
| 6 |
|
prjsprellsp.n |
|
| 7 |
1
|
cnveqi |
|
| 8 |
|
cnvopab |
|
| 9 |
7 8
|
eqtri |
|
| 10 |
9
|
eceq2i |
|
| 11 |
|
df-ec |
|
| 12 |
11
|
a1i |
|
| 13 |
|
imaopab |
|
| 14 |
13
|
a1i |
|
| 15 |
|
df-rex |
|
| 16 |
|
velsn |
|
| 17 |
16
|
anbi1i |
|
| 18 |
|
eleq1 |
|
| 19 |
18
|
anbi2d |
|
| 20 |
|
oveq2 |
|
| 21 |
20
|
eqeq2d |
|
| 22 |
21
|
rexbidv |
|
| 23 |
19 22
|
anbi12d |
|
| 24 |
23
|
pm5.32i |
|
| 25 |
17 24
|
bitri |
|
| 26 |
25
|
exbii |
|
| 27 |
|
19.41v |
|
| 28 |
|
elisset |
|
| 29 |
28
|
ad2antlr |
|
| 30 |
29
|
pm4.71ri |
|
| 31 |
27 30
|
bitr4i |
|
| 32 |
15 26 31
|
3bitri |
|
| 33 |
32
|
abbii |
|
| 34 |
|
iba |
|
| 35 |
34
|
bicomd |
|
| 36 |
35
|
anbi1d |
|
| 37 |
36
|
abbidv |
|
| 38 |
33 37
|
eqtrid |
|
| 39 |
38
|
adantl |
|
| 40 |
12 14 39
|
3eqtrd |
|
| 41 |
10 40
|
eqtrid |
|
| 42 |
|
df-rab |
|
| 43 |
42
|
a1i |
|
| 44 |
2
|
rabeqi |
|
| 45 |
|
rabdif |
|
| 46 |
45
|
a1i |
|
| 47 |
44 46
|
eqtr4id |
|
| 48 |
41 43 47
|
3eqtr2d |
|
| 49 |
1 2 3 4 5
|
prjsper |
|
| 50 |
49
|
adantr |
|
| 51 |
|
ercnv |
|
| 52 |
51
|
eqcomd |
|
| 53 |
50 52
|
syl |
|
| 54 |
53
|
eceq2d |
|
| 55 |
|
lveclmod |
|
| 56 |
|
difss |
|
| 57 |
2 56
|
eqsstri |
|
| 58 |
57
|
sseli |
|
| 59 |
|
eqid |
|
| 60 |
3 5 59 4 6
|
lspsn |
|
| 61 |
55 58 60
|
syl2an |
|
| 62 |
|
simpr |
|
| 63 |
55
|
adantr |
|
| 64 |
63
|
adantr |
|
| 65 |
|
simpr |
|
| 66 |
58
|
ad2antlr |
|
| 67 |
59 3 4 5 64 65 66
|
lmodvscld |
|
| 68 |
67
|
adantr |
|
| 69 |
62 68
|
eqeltrd |
|
| 70 |
69
|
rexlimdva2 |
|
| 71 |
70
|
pm4.71rd |
|
| 72 |
71
|
abbidv |
|
| 73 |
|
df-rab |
|
| 74 |
72 73
|
eqtr4di |
|
| 75 |
61 74
|
eqtrd |
|
| 76 |
75
|
difeq1d |
|
| 77 |
48 54 76
|
3eqtr4d |
|