Step |
Hyp |
Ref |
Expression |
1 |
|
prjsprel.1 |
|
2 |
|
prjspertr.b |
|
3 |
|
prjspertr.s |
|
4 |
|
prjspertr.x |
|
5 |
|
prjspertr.k |
|
6 |
|
prjsprellsp.n |
|
7 |
1
|
cnveqi |
|
8 |
|
cnvopab |
|
9 |
7 8
|
eqtri |
|
10 |
9
|
eceq2i |
|
11 |
|
df-ec |
|
12 |
11
|
a1i |
|
13 |
|
imaopab |
|
14 |
13
|
a1i |
|
15 |
|
df-rex |
|
16 |
|
velsn |
|
17 |
16
|
anbi1i |
|
18 |
|
eleq1 |
|
19 |
18
|
anbi2d |
|
20 |
|
oveq2 |
|
21 |
20
|
eqeq2d |
|
22 |
21
|
rexbidv |
|
23 |
19 22
|
anbi12d |
|
24 |
23
|
pm5.32i |
|
25 |
17 24
|
bitri |
|
26 |
25
|
exbii |
|
27 |
|
19.41v |
|
28 |
|
elisset |
|
29 |
28
|
ad2antlr |
|
30 |
29
|
pm4.71ri |
|
31 |
27 30
|
bitr4i |
|
32 |
15 26 31
|
3bitri |
|
33 |
32
|
abbii |
|
34 |
|
iba |
|
35 |
34
|
bicomd |
|
36 |
35
|
anbi1d |
|
37 |
36
|
abbidv |
|
38 |
33 37
|
eqtrid |
|
39 |
38
|
adantl |
|
40 |
12 14 39
|
3eqtrd |
|
41 |
10 40
|
eqtrid |
|
42 |
|
df-rab |
|
43 |
42
|
a1i |
|
44 |
2
|
rabeqi |
|
45 |
|
rabdif |
|
46 |
45
|
a1i |
|
47 |
44 46
|
eqtr4id |
|
48 |
41 43 47
|
3eqtr2d |
|
49 |
1 2 3 4 5
|
prjsper |
|
50 |
49
|
adantr |
|
51 |
|
ercnv |
|
52 |
51
|
eqcomd |
|
53 |
50 52
|
syl |
|
54 |
53
|
eceq2d |
|
55 |
|
lveclmod |
|
56 |
|
difss |
|
57 |
2 56
|
eqsstri |
|
58 |
57
|
sseli |
|
59 |
|
eqid |
|
60 |
3 5 59 4 6
|
lspsn |
|
61 |
55 58 60
|
syl2an |
|
62 |
|
simpr |
|
63 |
55
|
adantr |
|
64 |
63
|
adantr |
|
65 |
|
simpr |
|
66 |
58
|
ad2antlr |
|
67 |
59 3 4 5
|
lmodvscl |
|
68 |
64 65 66 67
|
syl3anc |
|
69 |
68
|
adantr |
|
70 |
62 69
|
eqeltrd |
|
71 |
70
|
rexlimdva2 |
|
72 |
71
|
pm4.71rd |
|
73 |
72
|
abbidv |
|
74 |
|
df-rab |
|
75 |
73 74
|
eqtr4di |
|
76 |
61 75
|
eqtrd |
|
77 |
76
|
difeq1d |
|
78 |
48 54 77
|
3eqtr4d |
|