| Step | Hyp | Ref | Expression | 
						
							| 1 |  | prodmo.1 |  | 
						
							| 2 |  | prodmo.2 |  | 
						
							| 3 |  | prodmo.3 |  | 
						
							| 4 |  | 3simpb |  | 
						
							| 5 | 4 | reximi |  | 
						
							| 6 |  | 3simpb |  | 
						
							| 7 | 6 | reximi |  | 
						
							| 8 |  | fveq2 |  | 
						
							| 9 | 8 | sseq2d |  | 
						
							| 10 |  | seqeq1 |  | 
						
							| 11 | 10 | breq1d |  | 
						
							| 12 | 9 11 | anbi12d |  | 
						
							| 13 | 12 | cbvrexvw |  | 
						
							| 14 | 13 | anbi2i |  | 
						
							| 15 |  | reeanv |  | 
						
							| 16 | 14 15 | bitr4i |  | 
						
							| 17 |  | simprlr |  | 
						
							| 18 | 17 | adantl |  | 
						
							| 19 | 2 | adantlr |  | 
						
							| 20 |  | simprll |  | 
						
							| 21 |  | simprlr |  | 
						
							| 22 |  | simprll |  | 
						
							| 23 | 22 | adantl |  | 
						
							| 24 |  | simprrl |  | 
						
							| 25 | 24 | adantl |  | 
						
							| 26 | 1 19 20 21 23 25 | prodrb |  | 
						
							| 27 | 18 26 | mpbid |  | 
						
							| 28 |  | simprrr |  | 
						
							| 29 | 28 | adantl |  | 
						
							| 30 |  | climuni |  | 
						
							| 31 | 27 29 30 | syl2anc |  | 
						
							| 32 | 31 | expcom |  | 
						
							| 33 | 32 | ex |  | 
						
							| 34 | 33 | rexlimivv |  | 
						
							| 35 | 16 34 | sylbi |  | 
						
							| 36 | 5 7 35 | syl2an |  | 
						
							| 37 | 1 2 3 | prodmolem2 |  | 
						
							| 38 |  | equcomi |  | 
						
							| 39 | 37 38 | syl6 |  | 
						
							| 40 | 39 | expimpd |  | 
						
							| 41 | 40 | com12 |  | 
						
							| 42 | 41 | ancoms |  | 
						
							| 43 | 1 2 3 | prodmolem2 |  | 
						
							| 44 | 43 | expimpd |  | 
						
							| 45 | 44 | com12 |  | 
						
							| 46 |  | reeanv |  | 
						
							| 47 |  | exdistrv |  | 
						
							| 48 | 47 | 2rexbii |  | 
						
							| 49 |  | oveq2 |  | 
						
							| 50 | 49 | f1oeq2d |  | 
						
							| 51 |  | fveq2 |  | 
						
							| 52 | 51 | eqeq2d |  | 
						
							| 53 | 50 52 | anbi12d |  | 
						
							| 54 | 53 | exbidv |  | 
						
							| 55 |  | f1oeq1 |  | 
						
							| 56 |  | fveq1 |  | 
						
							| 57 | 56 | csbeq1d |  | 
						
							| 58 | 57 | mpteq2dv |  | 
						
							| 59 | 3 58 | eqtrid |  | 
						
							| 60 | 59 | seqeq3d |  | 
						
							| 61 | 60 | fveq1d |  | 
						
							| 62 | 61 | eqeq2d |  | 
						
							| 63 | 55 62 | anbi12d |  | 
						
							| 64 | 63 | cbvexvw |  | 
						
							| 65 | 54 64 | bitrdi |  | 
						
							| 66 | 65 | cbvrexvw |  | 
						
							| 67 | 66 | anbi2i |  | 
						
							| 68 | 46 48 67 | 3bitr4i |  | 
						
							| 69 |  | an4 |  | 
						
							| 70 | 2 | ad4ant14 |  | 
						
							| 71 |  | fveq2 |  | 
						
							| 72 | 71 | csbeq1d |  | 
						
							| 73 | 72 | cbvmptv |  | 
						
							| 74 | 3 73 | eqtri |  | 
						
							| 75 |  | fveq2 |  | 
						
							| 76 | 75 | csbeq1d |  | 
						
							| 77 | 76 | cbvmptv |  | 
						
							| 78 |  | simplr |  | 
						
							| 79 |  | simprl |  | 
						
							| 80 |  | simprr |  | 
						
							| 81 | 1 70 74 77 78 79 80 | prodmolem3 |  | 
						
							| 82 |  | eqeq12 |  | 
						
							| 83 | 81 82 | syl5ibrcom |  | 
						
							| 84 | 83 | expimpd |  | 
						
							| 85 | 69 84 | biimtrid |  | 
						
							| 86 | 85 | exlimdvv |  | 
						
							| 87 | 86 | rexlimdvva |  | 
						
							| 88 | 68 87 | biimtrrid |  | 
						
							| 89 | 88 | com12 |  | 
						
							| 90 | 36 42 45 89 | ccase |  | 
						
							| 91 | 90 | com12 |  | 
						
							| 92 | 91 | alrimivv |  | 
						
							| 93 |  | breq2 |  | 
						
							| 94 | 93 | 3anbi3d |  | 
						
							| 95 | 94 | rexbidv |  | 
						
							| 96 |  | eqeq1 |  | 
						
							| 97 | 96 | anbi2d |  | 
						
							| 98 | 97 | exbidv |  | 
						
							| 99 | 98 | rexbidv |  | 
						
							| 100 | 95 99 | orbi12d |  | 
						
							| 101 | 100 | mo4 |  | 
						
							| 102 | 92 101 | sylibr |  |