Metamath Proof Explorer


Theorem psgnghm

Description: The sign is a homomorphism from the finitary permutation group to the numeric signs. (Contributed by Stefan O'Rear, 28-Aug-2015)

Ref Expression
Hypotheses psgnghm.s S=SymGrpD
psgnghm.n N=pmSgnD
psgnghm.f F=S𝑠domN
psgnghm.u U=mulGrpfld𝑠11
Assertion psgnghm DVNFGrpHomU

Proof

Step Hyp Ref Expression
1 psgnghm.s S=SymGrpD
2 psgnghm.n N=pmSgnD
3 psgnghm.f F=S𝑠domN
4 psgnghm.u U=mulGrpfld𝑠11
5 eqid BaseS=BaseS
6 eqid xBaseS|domxIFin=xBaseS|domxIFin
7 1 5 6 2 psgnfn NFnxBaseS|domxIFin
8 7 fndmi domN=xBaseS|domxIFin
9 8 ssrab3 domNBaseS
10 3 5 ressbas2 domNBaseSdomN=BaseF
11 9 10 ax-mp domN=BaseF
12 4 cnmsgnbas 11=BaseU
13 11 fvexi domNV
14 eqid +S=+S
15 3 14 ressplusg domNV+S=+F
16 13 15 ax-mp +S=+F
17 prex 11V
18 eqid mulGrpfld=mulGrpfld
19 cnfldmul ×=fld
20 18 19 mgpplusg ×=+mulGrpfld
21 4 20 ressplusg 11V×=+U
22 17 21 ax-mp ×=+U
23 1 2 psgndmsubg DVdomNSubGrpS
24 3 subggrp domNSubGrpSFGrp
25 23 24 syl DVFGrp
26 4 cnmsgngrp UGrp
27 26 a1i DVUGrp
28 fnfun NFnxBaseS|domxIFinFunN
29 7 28 ax-mp FunN
30 funfn FunNNFndomN
31 29 30 mpbi NFndomN
32 31 a1i DVNFndomN
33 eqid ranpmTrspD=ranpmTrspD
34 1 33 2 psgnvali xdomNzWordranpmTrspDx=SzNx=1z
35 lencl zWordranpmTrspDz0
36 35 nn0zd zWordranpmTrspDz
37 m1expcl2 z1z11
38 prcom 11=11
39 37 38 eleqtrdi z1z11
40 eleq1a 1z11Nx=1zNx11
41 36 39 40 3syl zWordranpmTrspDNx=1zNx11
42 41 adantld zWordranpmTrspDx=SzNx=1zNx11
43 42 rexlimiv zWordranpmTrspDx=SzNx=1zNx11
44 43 a1i DVzWordranpmTrspDx=SzNx=1zNx11
45 34 44 syl5 DVxdomNNx11
46 45 ralrimiv DVxdomNNx11
47 ffnfv N:domN11NFndomNxdomNNx11
48 32 46 47 sylanbrc DVN:domN11
49 ccatcl zWordranpmTrspDwWordranpmTrspDz++wWordranpmTrspD
50 1 33 2 psgnvalii DVz++wWordranpmTrspDNSz++w=1z++w
51 49 50 sylan2 DVzWordranpmTrspDwWordranpmTrspDNSz++w=1z++w
52 1 symggrp DVSGrp
53 52 grpmndd DVSMnd
54 33 1 5 symgtrf ranpmTrspDBaseS
55 sswrd ranpmTrspDBaseSWordranpmTrspDWordBaseS
56 54 55 ax-mp WordranpmTrspDWordBaseS
57 56 sseli zWordranpmTrspDzWordBaseS
58 56 sseli wWordranpmTrspDwWordBaseS
59 5 14 gsumccat SMndzWordBaseSwWordBaseSSz++w=Sz+SSw
60 53 57 58 59 syl3an DVzWordranpmTrspDwWordranpmTrspDSz++w=Sz+SSw
61 60 3expb DVzWordranpmTrspDwWordranpmTrspDSz++w=Sz+SSw
62 61 fveq2d DVzWordranpmTrspDwWordranpmTrspDNSz++w=NSz+SSw
63 ccatlen zWordranpmTrspDwWordranpmTrspDz++w=z+w
64 63 adantl DVzWordranpmTrspDwWordranpmTrspDz++w=z+w
65 64 oveq2d DVzWordranpmTrspDwWordranpmTrspD1z++w=1z+w
66 neg1cn 1
67 66 a1i DVzWordranpmTrspDwWordranpmTrspD1
68 lencl wWordranpmTrspDw0
69 68 ad2antll DVzWordranpmTrspDwWordranpmTrspDw0
70 35 ad2antrl DVzWordranpmTrspDwWordranpmTrspDz0
71 67 69 70 expaddd DVzWordranpmTrspDwWordranpmTrspD1z+w=1z1w
72 65 71 eqtrd DVzWordranpmTrspDwWordranpmTrspD1z++w=1z1w
73 51 62 72 3eqtr3d DVzWordranpmTrspDwWordranpmTrspDNSz+SSw=1z1w
74 oveq12 x=Szy=Swx+Sy=Sz+SSw
75 74 fveq2d x=Szy=SwNx+Sy=NSz+SSw
76 oveq12 Nx=1zNy=1wNxNy=1z1w
77 75 76 eqeqan12d x=Szy=SwNx=1zNy=1wNx+Sy=NxNyNSz+SSw=1z1w
78 77 an4s x=SzNx=1zy=SwNy=1wNx+Sy=NxNyNSz+SSw=1z1w
79 73 78 syl5ibrcom DVzWordranpmTrspDwWordranpmTrspDx=SzNx=1zy=SwNy=1wNx+Sy=NxNy
80 79 rexlimdvva DVzWordranpmTrspDwWordranpmTrspDx=SzNx=1zy=SwNy=1wNx+Sy=NxNy
81 1 33 2 psgnvali ydomNwWordranpmTrspDy=SwNy=1w
82 34 81 anim12i xdomNydomNzWordranpmTrspDx=SzNx=1zwWordranpmTrspDy=SwNy=1w
83 reeanv zWordranpmTrspDwWordranpmTrspDx=SzNx=1zy=SwNy=1wzWordranpmTrspDx=SzNx=1zwWordranpmTrspDy=SwNy=1w
84 82 83 sylibr xdomNydomNzWordranpmTrspDwWordranpmTrspDx=SzNx=1zy=SwNy=1w
85 80 84 impel DVxdomNydomNNx+Sy=NxNy
86 11 12 16 22 25 27 48 85 isghmd DVNFGrpHomU