Metamath Proof Explorer


Theorem psrbaglefiOLD

Description: Obsolete version of psrbaglefi as of 6-Aug-2024. (Contributed by Mario Carneiro, 29-Dec-2014) (Revised by Mario Carneiro, 25-Jan-2015) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis psrbag.d D=f0I|f-1Fin
Assertion psrbaglefiOLD IVFDyD|yfFFin

Proof

Step Hyp Ref Expression
1 psrbag.d D=f0I|f-1Fin
2 df-rab yD|yfF=y|yDyfF
3 1 psrbag IVyDy:I0y-1Fin
4 3 adantr IVFDyDy:I0y-1Fin
5 simpl y:I0y-1Finy:I0
6 4 5 syl6bi IVFDyDy:I0
7 6 adantrd IVFDyDyfFy:I0
8 ss2ixp xI0Fx0xI0FxxI0
9 fz0ssnn0 0Fx0
10 9 a1i xI0Fx0
11 8 10 mprg xI0FxxI0
12 11 sseli yxI0FxyxI0
13 vex yV
14 13 elixpconst yxI0y:I0
15 12 14 sylib yxI0Fxy:I0
16 15 a1i IVFDyxI0Fxy:I0
17 ffn y:I0yFnI
18 17 adantl IVFDy:I0yFnI
19 13 elixp yxI0FxyFnIxIyx0Fx
20 19 baib yFnIyxI0FxxIyx0Fx
21 18 20 syl IVFDy:I0yxI0FxxIyx0Fx
22 ffvelcdm y:I0xIyx0
23 22 adantll IVFDy:I0xIyx0
24 nn0uz 0=0
25 23 24 eleqtrdi IVFDy:I0xIyx0
26 1 psrbagfOLD IVFDF:I0
27 26 adantr IVFDy:I0F:I0
28 27 ffvelcdmda IVFDy:I0xIFx0
29 28 nn0zd IVFDy:I0xIFx
30 elfz5 yx0Fxyx0FxyxFx
31 25 29 30 syl2anc IVFDy:I0xIyx0FxyxFx
32 31 ralbidva IVFDy:I0xIyx0FxxIyxFx
33 27 ffnd IVFDy:I0FFnI
34 simpll IVFDy:I0IV
35 inidm II=I
36 eqidd IVFDy:I0xIyx=yx
37 eqidd IVFDy:I0xIFx=Fx
38 18 33 34 34 35 36 37 ofrfval IVFDy:I0yfFxIyxFx
39 32 38 bitr4d IVFDy:I0xIyx0FxyfF
40 1 psrbagleclOLD IVFDy:I0yfFyD
41 40 3exp2 IVFDy:I0yfFyD
42 41 imp31 IVFDy:I0yfFyD
43 42 pm4.71rd IVFDy:I0yfFyDyfF
44 21 39 43 3bitrrd IVFDy:I0yDyfFyxI0Fx
45 44 ex IVFDy:I0yDyfFyxI0Fx
46 7 16 45 pm5.21ndd IVFDyDyfFyxI0Fx
47 46 eqabcdv IVFDy|yDyfF=xI0Fx
48 2 47 eqtrid IVFDyD|yfF=xI0Fx
49 simpr IVFDFD
50 cnveq f=Ff-1=F-1
51 50 imaeq1d f=Ff-1=F-1
52 51 eleq1d f=Ff-1FinF-1Fin
53 52 1 elrab2 FDF0IF-1Fin
54 49 53 sylib IVFDF0IF-1Fin
55 54 simprd IVFDF-1Fin
56 fzfid IVFDxI0FxFin
57 simpl IVFDIV
58 57 26 jca IVFDIVF:I0
59 fcdmnn0supp IVF:I0Fsupp0=F-1
60 eqimss Fsupp0=F-1Fsupp0F-1
61 58 59 60 3syl IVFDFsupp0F-1
62 c0ex 0V
63 62 a1i IVFD0V
64 26 61 57 63 suppssr IVFDxIF-1Fx=0
65 64 oveq2d IVFDxIF-10Fx=00
66 fz0sn 00=0
67 65 66 eqtrdi IVFDxIF-10Fx=0
68 eqimss 0Fx=00Fx0
69 67 68 syl IVFDxIF-10Fx0
70 55 56 69 ixpfi2 IVFDxI0FxFin
71 48 70 eqeltrd IVFDyD|yfFFin