Step |
Hyp |
Ref |
Expression |
1 |
|
ptcnp.2 |
|
2 |
|
ptcnp.3 |
|
3 |
|
ptcnp.4 |
|
4 |
|
ptcnp.5 |
|
5 |
|
ptcnp.6 |
|
6 |
|
ptcnp.7 |
|
7 |
2
|
adantr |
|
8 |
4
|
ffvelrnda |
|
9 |
|
toptopon2 |
|
10 |
8 9
|
sylib |
|
11 |
|
cnpf2 |
|
12 |
7 10 6 11
|
syl3anc |
|
13 |
12
|
fvmptelrn |
|
14 |
13
|
an32s |
|
15 |
14
|
ralrimiva |
|
16 |
3
|
adantr |
|
17 |
|
mptelixpg |
|
18 |
16 17
|
syl |
|
19 |
15 18
|
mpbird |
|
20 |
19
|
fmpttd |
|
21 |
|
df-3an |
|
22 |
|
nfv |
|
23 |
|
nfv |
|
24 |
|
nfcv |
|
25 |
|
nfmpt1 |
|
26 |
24 25
|
nfmpt |
|
27 |
|
nfcv |
|
28 |
26 27
|
nffv |
|
29 |
28
|
nfel1 |
|
30 |
23 29
|
nfan |
|
31 |
22 30
|
nfan |
|
32 |
|
simprll |
|
33 |
|
simprlr |
|
34 |
|
fveq2 |
|
35 |
|
fveq2 |
|
36 |
34 35
|
eleq12d |
|
37 |
36
|
rspccva |
|
38 |
33 37
|
sylan |
|
39 |
|
simprrl |
|
40 |
39
|
simpld |
|
41 |
39
|
simprd |
|
42 |
35
|
unieqd |
|
43 |
34 42
|
eqeq12d |
|
44 |
43
|
rspccva |
|
45 |
41 44
|
sylan |
|
46 |
|
simprrr |
|
47 |
34
|
cbvixpv |
|
48 |
46 47
|
eleqtrdi |
|
49 |
1 2 3 4 5 6 31 32 38 40 45 48
|
ptcnplem |
|
50 |
49
|
anassrs |
|
51 |
50
|
expr |
|
52 |
51
|
rexlimdvaa |
|
53 |
52
|
impr |
|
54 |
21 53
|
sylan2b |
|
55 |
|
eleq2 |
|
56 |
47
|
eqeq2i |
|
57 |
56
|
biimpi |
|
58 |
57
|
sseq2d |
|
59 |
58
|
anbi2d |
|
60 |
59
|
rexbidv |
|
61 |
55 60
|
imbi12d |
|
62 |
54 61
|
syl5ibrcom |
|
63 |
62
|
expimpd |
|
64 |
63
|
exlimdv |
|
65 |
64
|
alrimiv |
|
66 |
|
eqeq1 |
|
67 |
66
|
anbi2d |
|
68 |
67
|
exbidv |
|
69 |
68
|
ralab |
|
70 |
65 69
|
sylibr |
|
71 |
4
|
ffnd |
|
72 |
|
eqid |
|
73 |
72
|
ptval |
|
74 |
3 71 73
|
syl2anc |
|
75 |
1 74
|
eqtrid |
|
76 |
4
|
feqmptd |
|
77 |
76
|
fveq2d |
|
78 |
1 77
|
eqtrid |
|
79 |
10
|
ralrimiva |
|
80 |
|
eqid |
|
81 |
80
|
pttopon |
|
82 |
3 79 81
|
syl2anc |
|
83 |
78 82
|
eqeltrd |
|
84 |
2 75 83 5
|
tgcnp |
|
85 |
20 70 84
|
mpbir2and |
|