Metamath Proof Explorer


Theorem ptcnp

Description: If every projection of a function is continuous at D , then the function itself is continuous at D into the product topology. (Contributed by Mario Carneiro, 3-Feb-2015) (Revised by Mario Carneiro, 22-Aug-2015)

Ref Expression
Hypotheses ptcnp.2 K=𝑡F
ptcnp.3 φJTopOnX
ptcnp.4 φIV
ptcnp.5 φF:ITop
ptcnp.6 φDX
ptcnp.7 φkIxXAJCnPFkD
Assertion ptcnp φxXkIAJCnPKD

Proof

Step Hyp Ref Expression
1 ptcnp.2 K=𝑡F
2 ptcnp.3 φJTopOnX
3 ptcnp.4 φIV
4 ptcnp.5 φF:ITop
5 ptcnp.6 φDX
6 ptcnp.7 φkIxXAJCnPFkD
7 2 adantr φkIJTopOnX
8 4 ffvelcdmda φkIFkTop
9 toptopon2 FkTopFkTopOnFk
10 8 9 sylib φkIFkTopOnFk
11 cnpf2 JTopOnXFkTopOnFkxXAJCnPFkDxXA:XFk
12 7 10 6 11 syl3anc φkIxXA:XFk
13 12 fvmptelcdm φkIxXAFk
14 13 an32s φxXkIAFk
15 14 ralrimiva φxXkIAFk
16 3 adantr φxXIV
17 mptelixpg IVkIAkIFkkIAFk
18 16 17 syl φxXkIAkIFkkIAFk
19 15 18 mpbird φxXkIAkIFk
20 19 fmpttd φxXkIA:XkIFk
21 df-3an gFnInIgnFnwFinnIwgn=FngFnInIgnFnwFinnIwgn=Fn
22 nfv kgFnInIgnFn
23 nfv kwFinnIwgn=Fn
24 nfcv _kX
25 nfmpt1 _kkIA
26 24 25 nfmpt _kxXkIA
27 nfcv _kD
28 26 27 nffv _kxXkIAD
29 28 nfel1 kxXkIADnIgn
30 23 29 nfan kwFinnIwgn=FnxXkIADnIgn
31 22 30 nfan kgFnInIgnFnwFinnIwgn=FnxXkIADnIgn
32 simprll φgFnInIgnFnwFinnIwgn=FnxXkIADnIgngFnI
33 simprlr φgFnInIgnFnwFinnIwgn=FnxXkIADnIgnnIgnFn
34 fveq2 n=kgn=gk
35 fveq2 n=kFn=Fk
36 34 35 eleq12d n=kgnFngkFk
37 36 rspccva nIgnFnkIgkFk
38 33 37 sylan φgFnInIgnFnwFinnIwgn=FnxXkIADnIgnkIgkFk
39 simprrl φgFnInIgnFnwFinnIwgn=FnxXkIADnIgnwFinnIwgn=Fn
40 39 simpld φgFnInIgnFnwFinnIwgn=FnxXkIADnIgnwFin
41 39 simprd φgFnInIgnFnwFinnIwgn=FnxXkIADnIgnnIwgn=Fn
42 35 unieqd n=kFn=Fk
43 34 42 eqeq12d n=kgn=Fngk=Fk
44 43 rspccva nIwgn=FnkIwgk=Fk
45 41 44 sylan φgFnInIgnFnwFinnIwgn=FnxXkIADnIgnkIwgk=Fk
46 simprrr φgFnInIgnFnwFinnIwgn=FnxXkIADnIgnxXkIADnIgn
47 34 cbvixpv nIgn=kIgk
48 46 47 eleqtrdi φgFnInIgnFnwFinnIwgn=FnxXkIADnIgnxXkIADkIgk
49 1 2 3 4 5 6 31 32 38 40 45 48 ptcnplem φgFnInIgnFnwFinnIwgn=FnxXkIADnIgnzJDzxXkIAzkIgk
50 49 anassrs φgFnInIgnFnwFinnIwgn=FnxXkIADnIgnzJDzxXkIAzkIgk
51 50 expr φgFnInIgnFnwFinnIwgn=FnxXkIADnIgnzJDzxXkIAzkIgk
52 51 rexlimdvaa φgFnInIgnFnwFinnIwgn=FnxXkIADnIgnzJDzxXkIAzkIgk
53 52 impr φgFnInIgnFnwFinnIwgn=FnxXkIADnIgnzJDzxXkIAzkIgk
54 21 53 sylan2b φgFnInIgnFnwFinnIwgn=FnxXkIADnIgnzJDzxXkIAzkIgk
55 eleq2 f=nIgnxXkIADfxXkIADnIgn
56 47 eqeq2i f=nIgnf=kIgk
57 56 biimpi f=nIgnf=kIgk
58 57 sseq2d f=nIgnxXkIAzfxXkIAzkIgk
59 58 anbi2d f=nIgnDzxXkIAzfDzxXkIAzkIgk
60 59 rexbidv f=nIgnzJDzxXkIAzfzJDzxXkIAzkIgk
61 55 60 imbi12d f=nIgnxXkIADfzJDzxXkIAzfxXkIADnIgnzJDzxXkIAzkIgk
62 54 61 syl5ibrcom φgFnInIgnFnwFinnIwgn=Fnf=nIgnxXkIADfzJDzxXkIAzf
63 62 expimpd φgFnInIgnFnwFinnIwgn=Fnf=nIgnxXkIADfzJDzxXkIAzf
64 63 exlimdv φggFnInIgnFnwFinnIwgn=Fnf=nIgnxXkIADfzJDzxXkIAzf
65 64 alrimiv φfggFnInIgnFnwFinnIwgn=Fnf=nIgnxXkIADfzJDzxXkIAzf
66 eqeq1 a=fa=nIgnf=nIgn
67 66 anbi2d a=fgFnInIgnFnwFinnIwgn=Fna=nIgngFnInIgnFnwFinnIwgn=Fnf=nIgn
68 67 exbidv a=fggFnInIgnFnwFinnIwgn=Fna=nIgnggFnInIgnFnwFinnIwgn=Fnf=nIgn
69 68 ralab fa|ggFnInIgnFnwFinnIwgn=Fna=nIgnxXkIADfzJDzxXkIAzffggFnInIgnFnwFinnIwgn=Fnf=nIgnxXkIADfzJDzxXkIAzf
70 65 69 sylibr φfa|ggFnInIgnFnwFinnIwgn=Fna=nIgnxXkIADfzJDzxXkIAzf
71 4 ffnd φFFnI
72 eqid a|ggFnInIgnFnwFinnIwgn=Fna=nIgn=a|ggFnInIgnFnwFinnIwgn=Fna=nIgn
73 72 ptval IVFFnI𝑡F=topGena|ggFnInIgnFnwFinnIwgn=Fna=nIgn
74 3 71 73 syl2anc φ𝑡F=topGena|ggFnInIgnFnwFinnIwgn=Fna=nIgn
75 1 74 eqtrid φK=topGena|ggFnInIgnFnwFinnIwgn=Fna=nIgn
76 4 feqmptd φF=kIFk
77 76 fveq2d φ𝑡F=𝑡kIFk
78 1 77 eqtrid φK=𝑡kIFk
79 10 ralrimiva φkIFkTopOnFk
80 eqid 𝑡kIFk=𝑡kIFk
81 80 pttopon IVkIFkTopOnFk𝑡kIFkTopOnkIFk
82 3 79 81 syl2anc φ𝑡kIFkTopOnkIFk
83 78 82 eqeltrd φKTopOnkIFk
84 2 75 83 5 tgcnp φxXkIAJCnPKDxXkIA:XkIFkfa|ggFnInIgnFnwFinnIwgn=Fna=nIgnxXkIADfzJDzxXkIAzf
85 20 70 84 mpbir2and φxXkIAJCnPKD