| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ptcnp.2 |  | 
						
							| 2 |  | ptcnp.3 |  | 
						
							| 3 |  | ptcnp.4 |  | 
						
							| 4 |  | ptcnp.5 |  | 
						
							| 5 |  | ptcnp.6 |  | 
						
							| 6 |  | ptcnp.7 |  | 
						
							| 7 | 2 | adantr |  | 
						
							| 8 | 4 | ffvelcdmda |  | 
						
							| 9 |  | toptopon2 |  | 
						
							| 10 | 8 9 | sylib |  | 
						
							| 11 |  | cnpf2 |  | 
						
							| 12 | 7 10 6 11 | syl3anc |  | 
						
							| 13 | 12 | fvmptelcdm |  | 
						
							| 14 | 13 | an32s |  | 
						
							| 15 | 14 | ralrimiva |  | 
						
							| 16 | 3 | adantr |  | 
						
							| 17 |  | mptelixpg |  | 
						
							| 18 | 16 17 | syl |  | 
						
							| 19 | 15 18 | mpbird |  | 
						
							| 20 | 19 | fmpttd |  | 
						
							| 21 |  | df-3an |  | 
						
							| 22 |  | nfv |  | 
						
							| 23 |  | nfv |  | 
						
							| 24 |  | nfcv |  | 
						
							| 25 |  | nfmpt1 |  | 
						
							| 26 | 24 25 | nfmpt |  | 
						
							| 27 |  | nfcv |  | 
						
							| 28 | 26 27 | nffv |  | 
						
							| 29 | 28 | nfel1 |  | 
						
							| 30 | 23 29 | nfan |  | 
						
							| 31 | 22 30 | nfan |  | 
						
							| 32 |  | simprll |  | 
						
							| 33 |  | simprlr |  | 
						
							| 34 |  | fveq2 |  | 
						
							| 35 |  | fveq2 |  | 
						
							| 36 | 34 35 | eleq12d |  | 
						
							| 37 | 36 | rspccva |  | 
						
							| 38 | 33 37 | sylan |  | 
						
							| 39 |  | simprrl |  | 
						
							| 40 | 39 | simpld |  | 
						
							| 41 | 39 | simprd |  | 
						
							| 42 | 35 | unieqd |  | 
						
							| 43 | 34 42 | eqeq12d |  | 
						
							| 44 | 43 | rspccva |  | 
						
							| 45 | 41 44 | sylan |  | 
						
							| 46 |  | simprrr |  | 
						
							| 47 | 34 | cbvixpv |  | 
						
							| 48 | 46 47 | eleqtrdi |  | 
						
							| 49 | 1 2 3 4 5 6 31 32 38 40 45 48 | ptcnplem |  | 
						
							| 50 | 49 | anassrs |  | 
						
							| 51 | 50 | expr |  | 
						
							| 52 | 51 | rexlimdvaa |  | 
						
							| 53 | 52 | impr |  | 
						
							| 54 | 21 53 | sylan2b |  | 
						
							| 55 |  | eleq2 |  | 
						
							| 56 | 47 | eqeq2i |  | 
						
							| 57 | 56 | biimpi |  | 
						
							| 58 | 57 | sseq2d |  | 
						
							| 59 | 58 | anbi2d |  | 
						
							| 60 | 59 | rexbidv |  | 
						
							| 61 | 55 60 | imbi12d |  | 
						
							| 62 | 54 61 | syl5ibrcom |  | 
						
							| 63 | 62 | expimpd |  | 
						
							| 64 | 63 | exlimdv |  | 
						
							| 65 | 64 | alrimiv |  | 
						
							| 66 |  | eqeq1 |  | 
						
							| 67 | 66 | anbi2d |  | 
						
							| 68 | 67 | exbidv |  | 
						
							| 69 | 68 | ralab |  | 
						
							| 70 | 65 69 | sylibr |  | 
						
							| 71 | 4 | ffnd |  | 
						
							| 72 |  | eqid |  | 
						
							| 73 | 72 | ptval |  | 
						
							| 74 | 3 71 73 | syl2anc |  | 
						
							| 75 | 1 74 | eqtrid |  | 
						
							| 76 | 4 | feqmptd |  | 
						
							| 77 | 76 | fveq2d |  | 
						
							| 78 | 1 77 | eqtrid |  | 
						
							| 79 | 10 | ralrimiva |  | 
						
							| 80 |  | eqid |  | 
						
							| 81 | 80 | pttopon |  | 
						
							| 82 | 3 79 81 | syl2anc |  | 
						
							| 83 | 78 82 | eqeltrd |  | 
						
							| 84 | 2 75 83 5 | tgcnp |  | 
						
							| 85 | 20 70 84 | mpbir2and |  |