Metamath Proof Explorer


Theorem ptcnp

Description: If every projection of a function is continuous at D , then the function itself is continuous at D into the product topology. (Contributed by Mario Carneiro, 3-Feb-2015) (Revised by Mario Carneiro, 22-Aug-2015)

Ref Expression
Hypotheses ptcnp.2 K = 𝑡 F
ptcnp.3 φ J TopOn X
ptcnp.4 φ I V
ptcnp.5 φ F : I Top
ptcnp.6 φ D X
ptcnp.7 φ k I x X A J CnP F k D
Assertion ptcnp φ x X k I A J CnP K D

Proof

Step Hyp Ref Expression
1 ptcnp.2 K = 𝑡 F
2 ptcnp.3 φ J TopOn X
3 ptcnp.4 φ I V
4 ptcnp.5 φ F : I Top
5 ptcnp.6 φ D X
6 ptcnp.7 φ k I x X A J CnP F k D
7 2 adantr φ k I J TopOn X
8 4 ffvelrnda φ k I F k Top
9 toptopon2 F k Top F k TopOn F k
10 8 9 sylib φ k I F k TopOn F k
11 cnpf2 J TopOn X F k TopOn F k x X A J CnP F k D x X A : X F k
12 7 10 6 11 syl3anc φ k I x X A : X F k
13 12 fvmptelrn φ k I x X A F k
14 13 an32s φ x X k I A F k
15 14 ralrimiva φ x X k I A F k
16 3 adantr φ x X I V
17 mptelixpg I V k I A k I F k k I A F k
18 16 17 syl φ x X k I A k I F k k I A F k
19 15 18 mpbird φ x X k I A k I F k
20 19 fmpttd φ x X k I A : X k I F k
21 df-3an g Fn I n I g n F n w Fin n I w g n = F n g Fn I n I g n F n w Fin n I w g n = F n
22 nfv k g Fn I n I g n F n
23 nfv k w Fin n I w g n = F n
24 nfcv _ k X
25 nfmpt1 _ k k I A
26 24 25 nfmpt _ k x X k I A
27 nfcv _ k D
28 26 27 nffv _ k x X k I A D
29 28 nfel1 k x X k I A D n I g n
30 23 29 nfan k w Fin n I w g n = F n x X k I A D n I g n
31 22 30 nfan k g Fn I n I g n F n w Fin n I w g n = F n x X k I A D n I g n
32 simprll φ g Fn I n I g n F n w Fin n I w g n = F n x X k I A D n I g n g Fn I
33 simprlr φ g Fn I n I g n F n w Fin n I w g n = F n x X k I A D n I g n n I g n F n
34 fveq2 n = k g n = g k
35 fveq2 n = k F n = F k
36 34 35 eleq12d n = k g n F n g k F k
37 36 rspccva n I g n F n k I g k F k
38 33 37 sylan φ g Fn I n I g n F n w Fin n I w g n = F n x X k I A D n I g n k I g k F k
39 simprrl φ g Fn I n I g n F n w Fin n I w g n = F n x X k I A D n I g n w Fin n I w g n = F n
40 39 simpld φ g Fn I n I g n F n w Fin n I w g n = F n x X k I A D n I g n w Fin
41 39 simprd φ g Fn I n I g n F n w Fin n I w g n = F n x X k I A D n I g n n I w g n = F n
42 35 unieqd n = k F n = F k
43 34 42 eqeq12d n = k g n = F n g k = F k
44 43 rspccva n I w g n = F n k I w g k = F k
45 41 44 sylan φ g Fn I n I g n F n w Fin n I w g n = F n x X k I A D n I g n k I w g k = F k
46 simprrr φ g Fn I n I g n F n w Fin n I w g n = F n x X k I A D n I g n x X k I A D n I g n
47 34 cbvixpv n I g n = k I g k
48 46 47 eleqtrdi φ g Fn I n I g n F n w Fin n I w g n = F n x X k I A D n I g n x X k I A D k I g k
49 1 2 3 4 5 6 31 32 38 40 45 48 ptcnplem φ g Fn I n I g n F n w Fin n I w g n = F n x X k I A D n I g n z J D z x X k I A z k I g k
50 49 anassrs φ g Fn I n I g n F n w Fin n I w g n = F n x X k I A D n I g n z J D z x X k I A z k I g k
51 50 expr φ g Fn I n I g n F n w Fin n I w g n = F n x X k I A D n I g n z J D z x X k I A z k I g k
52 51 rexlimdvaa φ g Fn I n I g n F n w Fin n I w g n = F n x X k I A D n I g n z J D z x X k I A z k I g k
53 52 impr φ g Fn I n I g n F n w Fin n I w g n = F n x X k I A D n I g n z J D z x X k I A z k I g k
54 21 53 sylan2b φ g Fn I n I g n F n w Fin n I w g n = F n x X k I A D n I g n z J D z x X k I A z k I g k
55 eleq2 f = n I g n x X k I A D f x X k I A D n I g n
56 47 eqeq2i f = n I g n f = k I g k
57 56 biimpi f = n I g n f = k I g k
58 57 sseq2d f = n I g n x X k I A z f x X k I A z k I g k
59 58 anbi2d f = n I g n D z x X k I A z f D z x X k I A z k I g k
60 59 rexbidv f = n I g n z J D z x X k I A z f z J D z x X k I A z k I g k
61 55 60 imbi12d f = n I g n x X k I A D f z J D z x X k I A z f x X k I A D n I g n z J D z x X k I A z k I g k
62 54 61 syl5ibrcom φ g Fn I n I g n F n w Fin n I w g n = F n f = n I g n x X k I A D f z J D z x X k I A z f
63 62 expimpd φ g Fn I n I g n F n w Fin n I w g n = F n f = n I g n x X k I A D f z J D z x X k I A z f
64 63 exlimdv φ g g Fn I n I g n F n w Fin n I w g n = F n f = n I g n x X k I A D f z J D z x X k I A z f
65 64 alrimiv φ f g g Fn I n I g n F n w Fin n I w g n = F n f = n I g n x X k I A D f z J D z x X k I A z f
66 eqeq1 a = f a = n I g n f = n I g n
67 66 anbi2d a = f g Fn I n I g n F n w Fin n I w g n = F n a = n I g n g Fn I n I g n F n w Fin n I w g n = F n f = n I g n
68 67 exbidv a = f g g Fn I n I g n F n w Fin n I w g n = F n a = n I g n g g Fn I n I g n F n w Fin n I w g n = F n f = n I g n
69 68 ralab f a | g g Fn I n I g n F n w Fin n I w g n = F n a = n I g n x X k I A D f z J D z x X k I A z f f g g Fn I n I g n F n w Fin n I w g n = F n f = n I g n x X k I A D f z J D z x X k I A z f
70 65 69 sylibr φ f a | g g Fn I n I g n F n w Fin n I w g n = F n a = n I g n x X k I A D f z J D z x X k I A z f
71 4 ffnd φ F Fn I
72 eqid a | g g Fn I n I g n F n w Fin n I w g n = F n a = n I g n = a | g g Fn I n I g n F n w Fin n I w g n = F n a = n I g n
73 72 ptval I V F Fn I 𝑡 F = topGen a | g g Fn I n I g n F n w Fin n I w g n = F n a = n I g n
74 3 71 73 syl2anc φ 𝑡 F = topGen a | g g Fn I n I g n F n w Fin n I w g n = F n a = n I g n
75 1 74 eqtrid φ K = topGen a | g g Fn I n I g n F n w Fin n I w g n = F n a = n I g n
76 4 feqmptd φ F = k I F k
77 76 fveq2d φ 𝑡 F = 𝑡 k I F k
78 1 77 eqtrid φ K = 𝑡 k I F k
79 10 ralrimiva φ k I F k TopOn F k
80 eqid 𝑡 k I F k = 𝑡 k I F k
81 80 pttopon I V k I F k TopOn F k 𝑡 k I F k TopOn k I F k
82 3 79 81 syl2anc φ 𝑡 k I F k TopOn k I F k
83 78 82 eqeltrd φ K TopOn k I F k
84 2 75 83 5 tgcnp φ x X k I A J CnP K D x X k I A : X k I F k f a | g g Fn I n I g n F n w Fin n I w g n = F n a = n I g n x X k I A D f z J D z x X k I A z f
85 20 70 84 mpbir2and φ x X k I A J CnP K D