| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pthd.p |
|
| 2 |
|
pthd.r |
|
| 3 |
|
pthd.s |
|
| 4 |
3
|
3ad2ant1 |
|
| 5 |
|
ralcom |
|
| 6 |
|
elfzo1 |
|
| 7 |
|
nnne0 |
|
| 8 |
7
|
necomd |
|
| 9 |
8
|
3ad2ant1 |
|
| 10 |
6 9
|
sylbi |
|
| 11 |
10
|
adantl |
|
| 12 |
|
neeq1 |
|
| 13 |
11 12
|
imbitrrid |
|
| 14 |
13
|
expd |
|
| 15 |
|
nnre |
|
| 16 |
15
|
adantr |
|
| 17 |
|
nnre |
|
| 18 |
17
|
adantl |
|
| 19 |
16 18
|
ltlend |
|
| 20 |
|
simpr |
|
| 21 |
19 20
|
biimtrdi |
|
| 22 |
21
|
3impia |
|
| 23 |
6 22
|
sylbi |
|
| 24 |
23
|
adantl |
|
| 25 |
|
neeq1 |
|
| 26 |
24 25
|
imbitrrid |
|
| 27 |
26
|
expd |
|
| 28 |
14 27
|
jaoi |
|
| 29 |
28
|
impcom |
|
| 30 |
29
|
3adant1 |
|
| 31 |
30
|
imp |
|
| 32 |
|
lbfzo0 |
|
| 33 |
32
|
biimpri |
|
| 34 |
|
eleq1 |
|
| 35 |
33 34
|
imbitrrid |
|
| 36 |
|
fzo0end |
|
| 37 |
2 36
|
eqeltrid |
|
| 38 |
|
eleq1 |
|
| 39 |
37 38
|
imbitrrid |
|
| 40 |
35 39
|
jaoi |
|
| 41 |
40
|
impcom |
|
| 42 |
41
|
3adant1 |
|
| 43 |
42
|
adantr |
|
| 44 |
|
neeq1 |
|
| 45 |
|
fveq2 |
|
| 46 |
45
|
neeq1d |
|
| 47 |
44 46
|
imbi12d |
|
| 48 |
47
|
rspcv |
|
| 49 |
43 48
|
syl |
|
| 50 |
31 49
|
mpid |
|
| 51 |
|
nesym |
|
| 52 |
50 51
|
imbitrdi |
|
| 53 |
52
|
ralimdva |
|
| 54 |
5 53
|
biimtrid |
|
| 55 |
4 54
|
mpd |
|
| 56 |
|
ralnex |
|
| 57 |
55 56
|
sylib |
|
| 58 |
|
wrdf |
|
| 59 |
|
ffun |
|
| 60 |
1 58 59
|
3syl |
|
| 61 |
60
|
3ad2ant1 |
|
| 62 |
|
fvelima |
|
| 63 |
62
|
ex |
|
| 64 |
61 63
|
syl |
|
| 65 |
57 64
|
mtod |
|
| 66 |
|
df-nel |
|
| 67 |
65 66
|
sylibr |
|