Description: Lemma for pthdlem2 . (Contributed by AV, 10-Feb-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | pthd.p | |
|
pthd.r | |
||
pthd.s | |
||
Assertion | pthdlem2lem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pthd.p | |
|
2 | pthd.r | |
|
3 | pthd.s | |
|
4 | 3 | 3ad2ant1 | |
5 | ralcom | |
|
6 | elfzo1 | |
|
7 | nnne0 | |
|
8 | 7 | necomd | |
9 | 8 | 3ad2ant1 | |
10 | 6 9 | sylbi | |
11 | 10 | adantl | |
12 | neeq1 | |
|
13 | 11 12 | imbitrrid | |
14 | 13 | expd | |
15 | nnre | |
|
16 | 15 | adantr | |
17 | nnre | |
|
18 | 17 | adantl | |
19 | 16 18 | ltlend | |
20 | simpr | |
|
21 | 19 20 | syl6bi | |
22 | 21 | 3impia | |
23 | 6 22 | sylbi | |
24 | 23 | adantl | |
25 | neeq1 | |
|
26 | 24 25 | imbitrrid | |
27 | 26 | expd | |
28 | 14 27 | jaoi | |
29 | 28 | impcom | |
30 | 29 | 3adant1 | |
31 | 30 | imp | |
32 | lbfzo0 | |
|
33 | 32 | biimpri | |
34 | eleq1 | |
|
35 | 33 34 | imbitrrid | |
36 | fzo0end | |
|
37 | 2 36 | eqeltrid | |
38 | eleq1 | |
|
39 | 37 38 | imbitrrid | |
40 | 35 39 | jaoi | |
41 | 40 | impcom | |
42 | 41 | 3adant1 | |
43 | 42 | adantr | |
44 | neeq1 | |
|
45 | fveq2 | |
|
46 | 45 | neeq1d | |
47 | 44 46 | imbi12d | |
48 | 47 | rspcv | |
49 | 43 48 | syl | |
50 | 31 49 | mpid | |
51 | nesym | |
|
52 | 50 51 | imbitrdi | |
53 | 52 | ralimdva | |
54 | 5 53 | biimtrid | |
55 | 4 54 | mpd | |
56 | ralnex | |
|
57 | 55 56 | sylib | |
58 | wrdf | |
|
59 | ffun | |
|
60 | 1 58 59 | 3syl | |
61 | 60 | 3ad2ant1 | |
62 | fvelima | |
|
63 | 62 | ex | |
64 | 61 63 | syl | |
65 | 57 64 | mtod | |
66 | df-nel | |
|
67 | 65 66 | sylibr | |