Step |
Hyp |
Ref |
Expression |
1 |
|
pzriprng.r |
|
2 |
|
pzriprng.i |
|
3 |
|
0z |
|
4 |
|
c0ex |
|
5 |
4
|
snss |
|
6 |
3 5
|
mpbi |
|
7 |
|
xpss2 |
|
8 |
6 7
|
ax-mp |
|
9 |
1
|
pzriprnglem2 |
|
10 |
8 2 9
|
3sstr4i |
|
11 |
3
|
ne0ii |
|
12 |
4
|
snnz |
|
13 |
11 12
|
pm3.2i |
|
14 |
|
xpnz |
|
15 |
13 14
|
mpbi |
|
16 |
2 15
|
eqnetri |
|
17 |
1 2
|
pzriprnglem3 |
|
18 |
1 2
|
pzriprnglem3 |
|
19 |
|
simpr |
|
20 |
19
|
adantr |
|
21 |
|
id |
|
22 |
20 21
|
oveqan12d |
|
23 |
|
zringbas |
|
24 |
|
zringring |
|
25 |
24
|
a1i |
|
26 |
|
simpl |
|
27 |
3
|
a1i |
|
28 |
|
simpr |
|
29 |
|
zaddcl |
|
30 |
|
00id |
|
31 |
30 3
|
eqeltri |
|
32 |
31
|
a1i |
|
33 |
|
zringplusg |
|
34 |
|
eqid |
|
35 |
1 23 23 25 25 26 27 28 27 29 32 33 33 34
|
xpsadd |
|
36 |
4
|
snid |
|
37 |
30 36
|
eqeltri |
|
38 |
2
|
eleq2i |
|
39 |
|
opelxp |
|
40 |
38 39
|
bitri |
|
41 |
29 37 40
|
sylanblrc |
|
42 |
35 41
|
eqeltrd |
|
43 |
42
|
ad4ant13 |
|
44 |
22 43
|
eqeltrd |
|
45 |
44
|
rexlimdva2 |
|
46 |
18 45
|
biimtrid |
|
47 |
46
|
ralrimiv |
|
48 |
|
zringgrp |
|
49 |
48
|
a1i |
|
50 |
|
id |
|
51 |
3
|
a1i |
|
52 |
|
eqid |
|
53 |
|
eqid |
|
54 |
1 23 23 49 49 50 51 52 52 53
|
xpsinv |
|
55 |
|
zringinvg |
|
56 |
|
znegcl |
|
57 |
55 56
|
eqeltrrd |
|
58 |
|
neg0 |
|
59 |
58 36
|
eqeltri |
|
60 |
|
zringinvg |
|
61 |
60
|
eleq1d |
|
62 |
3 61
|
mp1i |
|
63 |
59 62
|
mpbii |
|
64 |
57 63
|
opelxpd |
|
65 |
54 64
|
eqeltrd |
|
66 |
65
|
adantr |
|
67 |
|
fveq2 |
|
68 |
67
|
adantl |
|
69 |
2
|
a1i |
|
70 |
66 68 69
|
3eltr4d |
|
71 |
47 70
|
jca |
|
72 |
71
|
rexlimiva |
|
73 |
17 72
|
sylbi |
|
74 |
73
|
rgen |
|
75 |
1
|
pzriprnglem1 |
|
76 |
|
rnggrp |
|
77 |
75 76
|
ax-mp |
|
78 |
|
eqid |
|
79 |
78 34 53
|
issubg2 |
|
80 |
77 79
|
ax-mp |
|
81 |
10 16 74 80
|
mpbir3an |
|