Metamath Proof Explorer


Theorem rankonidlem

Description: Lemma for rankonid . (Contributed by NM, 14-Oct-2003) (Revised by Mario Carneiro, 22-Mar-2013)

Ref Expression
Assertion rankonidlem AdomR1AR1OnrankA=A

Proof

Step Hyp Ref Expression
1 r1funlim FunR1LimdomR1
2 1 simpri LimdomR1
3 limord LimdomR1OrddomR1
4 2 3 ax-mp OrddomR1
5 ordelon OrddomR1AdomR1AOn
6 4 5 mpan AdomR1AOn
7 eleq1 x=yxdomR1ydomR1
8 eleq1 x=yxR1OnyR1On
9 fveq2 x=yrankx=ranky
10 id x=yx=y
11 9 10 eqeq12d x=yrankx=xranky=y
12 8 11 anbi12d x=yxR1Onrankx=xyR1Onranky=y
13 7 12 imbi12d x=yxdomR1xR1Onrankx=xydomR1yR1Onranky=y
14 eleq1 x=AxdomR1AdomR1
15 eleq1 x=AxR1OnAR1On
16 fveq2 x=Arankx=rankA
17 id x=Ax=A
18 16 17 eqeq12d x=Arankx=xrankA=A
19 15 18 anbi12d x=AxR1Onrankx=xAR1OnrankA=A
20 14 19 imbi12d x=AxdomR1xR1Onrankx=xAdomR1AR1OnrankA=A
21 ordtr1 OrddomR1yxxdomR1ydomR1
22 4 21 ax-mp yxxdomR1ydomR1
23 22 ancoms xdomR1yxydomR1
24 pm5.5 ydomR1ydomR1yR1Onranky=yyR1Onranky=y
25 23 24 syl xdomR1yxydomR1yR1Onranky=yyR1Onranky=y
26 25 ralbidva xdomR1yxydomR1yR1Onranky=yyxyR1Onranky=y
27 simplr xdomR1yxyR1Onranky=yyx
28 ordelon OrddomR1xdomR1xOn
29 4 28 mpan xdomR1xOn
30 29 ad2antrr xdomR1yxyR1Onranky=yxOn
31 eloni xOnOrdx
32 30 31 syl xdomR1yxyR1Onranky=yOrdx
33 ordelsuc yxOrdxyxsucyx
34 27 32 33 syl2anc xdomR1yxyR1Onranky=yyxsucyx
35 27 34 mpbid xdomR1yxyR1Onranky=ysucyx
36 23 adantr xdomR1yxyR1Onranky=yydomR1
37 limsuc LimdomR1ydomR1sucydomR1
38 2 37 ax-mp ydomR1sucydomR1
39 36 38 sylib xdomR1yxyR1Onranky=ysucydomR1
40 simpll xdomR1yxyR1Onranky=yxdomR1
41 r1ord3g sucydomR1xdomR1sucyxR1sucyR1x
42 39 40 41 syl2anc xdomR1yxyR1Onranky=ysucyxR1sucyR1x
43 35 42 mpd xdomR1yxyR1Onranky=yR1sucyR1x
44 rankidb yR1OnyR1sucranky
45 44 ad2antrl xdomR1yxyR1Onranky=yyR1sucranky
46 suceq ranky=ysucranky=sucy
47 46 ad2antll xdomR1yxyR1Onranky=ysucranky=sucy
48 47 fveq2d xdomR1yxyR1Onranky=yR1sucranky=R1sucy
49 45 48 eleqtrd xdomR1yxyR1Onranky=yyR1sucy
50 43 49 sseldd xdomR1yxyR1Onranky=yyR1x
51 50 ex xdomR1yxyR1Onranky=yyR1x
52 51 ralimdva xdomR1yxyR1Onranky=yyxyR1x
53 52 imp xdomR1yxyR1Onranky=yyxyR1x
54 dfss3 xR1xyxyR1x
55 53 54 sylibr xdomR1yxyR1Onranky=yxR1x
56 vex xV
57 56 elpw x𝒫R1xxR1x
58 55 57 sylibr xdomR1yxyR1Onranky=yx𝒫R1x
59 r1sucg xdomR1R1sucx=𝒫R1x
60 59 adantr xdomR1yxyR1Onranky=yR1sucx=𝒫R1x
61 58 60 eleqtrrd xdomR1yxyR1Onranky=yxR1sucx
62 r1elwf xR1sucxxR1On
63 61 62 syl xdomR1yxyR1Onranky=yxR1On
64 rankval3b xR1Onrankx=zOn|yxrankyz
65 63 64 syl xdomR1yxyR1Onranky=yrankx=zOn|yxrankyz
66 eleq1 ranky=yrankyzyz
67 66 adantl yR1Onranky=yrankyzyz
68 67 ralimi yxyR1Onranky=yyxrankyzyz
69 ralbi yxrankyzyzyxrankyzyxyz
70 68 69 syl yxyR1Onranky=yyxrankyzyxyz
71 dfss3 xzyxyz
72 70 71 bitr4di yxyR1Onranky=yyxrankyzxz
73 72 rabbidv yxyR1Onranky=yzOn|yxrankyz=zOn|xz
74 73 inteqd yxyR1Onranky=yzOn|yxrankyz=zOn|xz
75 74 adantl xdomR1yxyR1Onranky=yzOn|yxrankyz=zOn|xz
76 29 adantr xdomR1yxyR1Onranky=yxOn
77 intmin xOnzOn|xz=x
78 76 77 syl xdomR1yxyR1Onranky=yzOn|xz=x
79 65 75 78 3eqtrd xdomR1yxyR1Onranky=yrankx=x
80 63 79 jca xdomR1yxyR1Onranky=yxR1Onrankx=x
81 80 ex xdomR1yxyR1Onranky=yxR1Onrankx=x
82 26 81 sylbid xdomR1yxydomR1yR1Onranky=yxR1Onrankx=x
83 82 com12 yxydomR1yR1Onranky=yxdomR1xR1Onrankx=x
84 83 a1i xOnyxydomR1yR1Onranky=yxdomR1xR1Onrankx=x
85 13 20 84 tfis3 AOnAdomR1AR1OnrankA=A
86 6 85 mpcom AdomR1AR1OnrankA=A