Metamath Proof Explorer


Theorem reghmph

Description: Regularity is a topological property. (Contributed by Mario Carneiro, 25-Aug-2015)

Ref Expression
Assertion reghmph JKJRegKReg

Proof

Step Hyp Ref Expression
1 hmph JKJHomeoK
2 n0 JHomeoKffJHomeoK
3 hmeocn fJHomeoKfJCnK
4 3 adantl JRegfJHomeoKfJCnK
5 cntop2 fJCnKKTop
6 4 5 syl JRegfJHomeoKKTop
7 simpll JRegfJHomeoKxKyxJReg
8 4 adantr JRegfJHomeoKxKyxfJCnK
9 simprl JRegfJHomeoKxKyxxK
10 cnima fJCnKxKf-1xJ
11 8 9 10 syl2anc JRegfJHomeoKxKyxf-1xJ
12 eqid J=J
13 eqid K=K
14 12 13 hmeof1o fJHomeoKf:J1-1 ontoK
15 14 ad2antlr JRegfJHomeoKxKyxf:J1-1 ontoK
16 f1ocnv f:J1-1 ontoKf-1:K1-1 ontoJ
17 f1ofn f-1:K1-1 ontoJf-1FnK
18 15 16 17 3syl JRegfJHomeoKxKyxf-1FnK
19 elssuni xKxK
20 19 ad2antrl JRegfJHomeoKxKyxxK
21 simprr JRegfJHomeoKxKyxyx
22 fnfvima f-1FnKxKyxf-1yf-1x
23 18 20 21 22 syl3anc JRegfJHomeoKxKyxf-1yf-1x
24 regsep JRegf-1xJf-1yf-1xwJf-1ywclsJwf-1x
25 7 11 23 24 syl3anc JRegfJHomeoKxKyxwJf-1ywclsJwf-1x
26 simpllr JRegfJHomeoKxKyxwJf-1ywclsJwf-1xfJHomeoK
27 simprl JRegfJHomeoKxKyxwJf-1ywclsJwf-1xwJ
28 hmeoima fJHomeoKwJfwK
29 26 27 28 syl2anc JRegfJHomeoKxKyxwJf-1ywclsJwf-1xfwK
30 20 21 sseldd JRegfJHomeoKxKyxyK
31 30 adantr JRegfJHomeoKxKyxwJf-1ywclsJwf-1xyK
32 simprrl JRegfJHomeoKxKyxwJf-1ywclsJwf-1xf-1yw
33 18 adantr JRegfJHomeoKxKyxwJf-1ywclsJwf-1xf-1FnK
34 elpreima f-1FnKyf-1-1wyKf-1yw
35 33 34 syl JRegfJHomeoKxKyxwJf-1ywclsJwf-1xyf-1-1wyKf-1yw
36 31 32 35 mpbir2and JRegfJHomeoKxKyxwJf-1ywclsJwf-1xyf-1-1w
37 imacnvcnv f-1-1w=fw
38 36 37 eleqtrdi JRegfJHomeoKxKyxwJf-1ywclsJwf-1xyfw
39 elssuni wJwJ
40 39 ad2antrl JRegfJHomeoKxKyxwJf-1ywclsJwf-1xwJ
41 12 hmeocls fJHomeoKwJclsKfw=fclsJw
42 26 40 41 syl2anc JRegfJHomeoKxKyxwJf-1ywclsJwf-1xclsKfw=fclsJw
43 simprrr JRegfJHomeoKxKyxwJf-1ywclsJwf-1xclsJwf-1x
44 15 adantr JRegfJHomeoKxKyxwJf-1ywclsJwf-1xf:J1-1 ontoK
45 f1ofun f:J1-1 ontoKFunf
46 44 45 syl JRegfJHomeoKxKyxwJf-1ywclsJwf-1xFunf
47 7 adantr JRegfJHomeoKxKyxwJf-1ywclsJwf-1xJReg
48 regtop JRegJTop
49 47 48 syl JRegfJHomeoKxKyxwJf-1ywclsJwf-1xJTop
50 12 clsss3 JTopwJclsJwJ
51 49 40 50 syl2anc JRegfJHomeoKxKyxwJf-1ywclsJwf-1xclsJwJ
52 f1odm f:J1-1 ontoKdomf=J
53 44 52 syl JRegfJHomeoKxKyxwJf-1ywclsJwf-1xdomf=J
54 51 53 sseqtrrd JRegfJHomeoKxKyxwJf-1ywclsJwf-1xclsJwdomf
55 funimass3 FunfclsJwdomffclsJwxclsJwf-1x
56 46 54 55 syl2anc JRegfJHomeoKxKyxwJf-1ywclsJwf-1xfclsJwxclsJwf-1x
57 43 56 mpbird JRegfJHomeoKxKyxwJf-1ywclsJwf-1xfclsJwx
58 42 57 eqsstrd JRegfJHomeoKxKyxwJf-1ywclsJwf-1xclsKfwx
59 eleq2 z=fwyzyfw
60 fveq2 z=fwclsKz=clsKfw
61 60 sseq1d z=fwclsKzxclsKfwx
62 59 61 anbi12d z=fwyzclsKzxyfwclsKfwx
63 62 rspcev fwKyfwclsKfwxzKyzclsKzx
64 29 38 58 63 syl12anc JRegfJHomeoKxKyxwJf-1ywclsJwf-1xzKyzclsKzx
65 25 64 rexlimddv JRegfJHomeoKxKyxzKyzclsKzx
66 65 ralrimivva JRegfJHomeoKxKyxzKyzclsKzx
67 isreg KRegKTopxKyxzKyzclsKzx
68 6 66 67 sylanbrc JRegfJHomeoKKReg
69 68 expcom fJHomeoKJRegKReg
70 69 exlimiv ffJHomeoKJRegKReg
71 2 70 sylbi JHomeoKJRegKReg
72 1 71 sylbi JKJRegKReg