Description: Regularity is a topological property. (Contributed by Mario Carneiro, 25-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | reghmph | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hmph | |
|
2 | n0 | |
|
3 | hmeocn | |
|
4 | 3 | adantl | |
5 | cntop2 | |
|
6 | 4 5 | syl | |
7 | simpll | |
|
8 | 4 | adantr | |
9 | simprl | |
|
10 | cnima | |
|
11 | 8 9 10 | syl2anc | |
12 | eqid | |
|
13 | eqid | |
|
14 | 12 13 | hmeof1o | |
15 | 14 | ad2antlr | |
16 | f1ocnv | |
|
17 | f1ofn | |
|
18 | 15 16 17 | 3syl | |
19 | elssuni | |
|
20 | 19 | ad2antrl | |
21 | simprr | |
|
22 | fnfvima | |
|
23 | 18 20 21 22 | syl3anc | |
24 | regsep | |
|
25 | 7 11 23 24 | syl3anc | |
26 | simpllr | |
|
27 | simprl | |
|
28 | hmeoima | |
|
29 | 26 27 28 | syl2anc | |
30 | 20 21 | sseldd | |
31 | 30 | adantr | |
32 | simprrl | |
|
33 | 18 | adantr | |
34 | elpreima | |
|
35 | 33 34 | syl | |
36 | 31 32 35 | mpbir2and | |
37 | imacnvcnv | |
|
38 | 36 37 | eleqtrdi | |
39 | elssuni | |
|
40 | 39 | ad2antrl | |
41 | 12 | hmeocls | |
42 | 26 40 41 | syl2anc | |
43 | simprrr | |
|
44 | 15 | adantr | |
45 | f1ofun | |
|
46 | 44 45 | syl | |
47 | 7 | adantr | |
48 | regtop | |
|
49 | 47 48 | syl | |
50 | 12 | clsss3 | |
51 | 49 40 50 | syl2anc | |
52 | f1odm | |
|
53 | 44 52 | syl | |
54 | 51 53 | sseqtrrd | |
55 | funimass3 | |
|
56 | 46 54 55 | syl2anc | |
57 | 43 56 | mpbird | |
58 | 42 57 | eqsstrd | |
59 | eleq2 | |
|
60 | fveq2 | |
|
61 | 60 | sseq1d | |
62 | 59 61 | anbi12d | |
63 | 62 | rspcev | |
64 | 29 38 58 63 | syl12anc | |
65 | 25 64 | rexlimddv | |
66 | 65 | ralrimivva | |
67 | isreg | |
|
68 | 6 66 67 | sylanbrc | |
69 | 68 | expcom | |
70 | 69 | exlimiv | |
71 | 2 70 | sylbi | |
72 | 1 71 | sylbi | |