Metamath Proof Explorer


Theorem relcmpcmet

Description: If D is a metric space such that all the balls of some fixed size are relatively compact, then D is complete. (Contributed by Mario Carneiro, 15-Oct-2015)

Ref Expression
Hypotheses relcmpcmet.1 J=MetOpenD
relcmpcmet.2 φDMetX
relcmpcmet.3 φR+
relcmpcmet.4 φxXJ𝑡clsJxballDRComp
Assertion relcmpcmet φDCMetX

Proof

Step Hyp Ref Expression
1 relcmpcmet.1 J=MetOpenD
2 relcmpcmet.2 φDMetX
3 relcmpcmet.3 φR+
4 relcmpcmet.4 φxXJ𝑡clsJxballDRComp
5 metxmet DMetXD∞MetX
6 2 5 syl φD∞MetX
7 6 adantr φfCauFilDD∞MetX
8 simpr φfCauFilDfCauFilD
9 3 adantr φfCauFilDR+
10 cfil3i D∞MetXfCauFilDR+xXxballDRf
11 7 8 9 10 syl3anc φfCauFilDxXxballDRf
12 6 ad2antrr φfCauFilDxXxballDRfD∞MetX
13 1 mopntopon D∞MetXJTopOnX
14 12 13 syl φfCauFilDxXxballDRfJTopOnX
15 cfilfil D∞MetXfCauFilDfFilX
16 6 15 sylan φfCauFilDfFilX
17 16 adantr φfCauFilDxXxballDRffFilX
18 simprr φfCauFilDxXxballDRfxballDRf
19 topontop JTopOnXJTop
20 14 19 syl φfCauFilDxXxballDRfJTop
21 simprl φfCauFilDxXxballDRfxX
22 3 rpxrd φR*
23 22 ad2antrr φfCauFilDxXxballDRfR*
24 blssm D∞MetXxXR*xballDRX
25 12 21 23 24 syl3anc φfCauFilDxXxballDRfxballDRX
26 toponuni JTopOnXX=J
27 14 26 syl φfCauFilDxXxballDRfX=J
28 25 27 sseqtrd φfCauFilDxXxballDRfxballDRJ
29 eqid J=J
30 29 clsss3 JTopxballDRJclsJxballDRJ
31 20 28 30 syl2anc φfCauFilDxXxballDRfclsJxballDRJ
32 31 27 sseqtrrd φfCauFilDxXxballDRfclsJxballDRX
33 29 sscls JTopxballDRJxballDRclsJxballDR
34 20 28 33 syl2anc φfCauFilDxXxballDRfxballDRclsJxballDR
35 filss fFilXxballDRfclsJxballDRXxballDRclsJxballDRclsJxballDRf
36 17 18 32 34 35 syl13anc φfCauFilDxXxballDRfclsJxballDRf
37 fclsrest JTopOnXfFilXclsJxballDRfJ𝑡clsJxballDRfClusf𝑡clsJxballDR=JfClusfclsJxballDR
38 14 17 36 37 syl3anc φfCauFilDxXxballDRfJ𝑡clsJxballDRfClusf𝑡clsJxballDR=JfClusfclsJxballDR
39 inss1 JfClusfclsJxballDRJfClusf
40 eqid domdomD=domdomD
41 1 40 cfilfcls fCauFilDJfClusf=JfLimf
42 41 ad2antlr φfCauFilDxXxballDRfJfClusf=JfLimf
43 39 42 sseqtrid φfCauFilDxXxballDRfJfClusfclsJxballDRJfLimf
44 38 43 eqsstrd φfCauFilDxXxballDRfJ𝑡clsJxballDRfClusf𝑡clsJxballDRJfLimf
45 4 ad2ant2r φfCauFilDxXxballDRfJ𝑡clsJxballDRComp
46 filfbas fFilXffBasX
47 17 46 syl φfCauFilDxXxballDRfffBasX
48 fbncp ffBasXclsJxballDRf¬XclsJxballDRf
49 47 36 48 syl2anc φfCauFilDxXxballDRf¬XclsJxballDRf
50 trfil3 fFilXclsJxballDRXf𝑡clsJxballDRFilclsJxballDR¬XclsJxballDRf
51 17 32 50 syl2anc φfCauFilDxXxballDRff𝑡clsJxballDRFilclsJxballDR¬XclsJxballDRf
52 49 51 mpbird φfCauFilDxXxballDRff𝑡clsJxballDRFilclsJxballDR
53 resttopon JTopOnXclsJxballDRXJ𝑡clsJxballDRTopOnclsJxballDR
54 14 32 53 syl2anc φfCauFilDxXxballDRfJ𝑡clsJxballDRTopOnclsJxballDR
55 toponuni J𝑡clsJxballDRTopOnclsJxballDRclsJxballDR=J𝑡clsJxballDR
56 54 55 syl φfCauFilDxXxballDRfclsJxballDR=J𝑡clsJxballDR
57 56 fveq2d φfCauFilDxXxballDRfFilclsJxballDR=FilJ𝑡clsJxballDR
58 52 57 eleqtrd φfCauFilDxXxballDRff𝑡clsJxballDRFilJ𝑡clsJxballDR
59 eqid J𝑡clsJxballDR=J𝑡clsJxballDR
60 59 fclscmpi J𝑡clsJxballDRCompf𝑡clsJxballDRFilJ𝑡clsJxballDRJ𝑡clsJxballDRfClusf𝑡clsJxballDR
61 45 58 60 syl2anc φfCauFilDxXxballDRfJ𝑡clsJxballDRfClusf𝑡clsJxballDR
62 ssn0 J𝑡clsJxballDRfClusf𝑡clsJxballDRJfLimfJ𝑡clsJxballDRfClusf𝑡clsJxballDRJfLimf
63 44 61 62 syl2anc φfCauFilDxXxballDRfJfLimf
64 11 63 rexlimddv φfCauFilDJfLimf
65 64 ralrimiva φfCauFilDJfLimf
66 1 iscmet DCMetXDMetXfCauFilDJfLimf
67 2 65 66 sylanbrc φDCMetX