Description: If D is a metric space such that all the balls of some fixed size are relatively compact, then D is complete. (Contributed by Mario Carneiro, 15-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | relcmpcmet.1 | |
|
relcmpcmet.2 | |
||
relcmpcmet.3 | |
||
relcmpcmet.4 | |
||
Assertion | relcmpcmet | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relcmpcmet.1 | |
|
2 | relcmpcmet.2 | |
|
3 | relcmpcmet.3 | |
|
4 | relcmpcmet.4 | |
|
5 | metxmet | |
|
6 | 2 5 | syl | |
7 | 6 | adantr | |
8 | simpr | |
|
9 | 3 | adantr | |
10 | cfil3i | |
|
11 | 7 8 9 10 | syl3anc | |
12 | 6 | ad2antrr | |
13 | 1 | mopntopon | |
14 | 12 13 | syl | |
15 | cfilfil | |
|
16 | 6 15 | sylan | |
17 | 16 | adantr | |
18 | simprr | |
|
19 | topontop | |
|
20 | 14 19 | syl | |
21 | simprl | |
|
22 | 3 | rpxrd | |
23 | 22 | ad2antrr | |
24 | blssm | |
|
25 | 12 21 23 24 | syl3anc | |
26 | toponuni | |
|
27 | 14 26 | syl | |
28 | 25 27 | sseqtrd | |
29 | eqid | |
|
30 | 29 | clsss3 | |
31 | 20 28 30 | syl2anc | |
32 | 31 27 | sseqtrrd | |
33 | 29 | sscls | |
34 | 20 28 33 | syl2anc | |
35 | filss | |
|
36 | 17 18 32 34 35 | syl13anc | |
37 | fclsrest | |
|
38 | 14 17 36 37 | syl3anc | |
39 | inss1 | |
|
40 | eqid | |
|
41 | 1 40 | cfilfcls | |
42 | 41 | ad2antlr | |
43 | 39 42 | sseqtrid | |
44 | 38 43 | eqsstrd | |
45 | 4 | ad2ant2r | |
46 | filfbas | |
|
47 | 17 46 | syl | |
48 | fbncp | |
|
49 | 47 36 48 | syl2anc | |
50 | trfil3 | |
|
51 | 17 32 50 | syl2anc | |
52 | 49 51 | mpbird | |
53 | resttopon | |
|
54 | 14 32 53 | syl2anc | |
55 | toponuni | |
|
56 | 54 55 | syl | |
57 | 56 | fveq2d | |
58 | 52 57 | eleqtrd | |
59 | eqid | |
|
60 | 59 | fclscmpi | |
61 | 45 58 60 | syl2anc | |
62 | ssn0 | |
|
63 | 44 61 62 | syl2anc | |
64 | 11 63 | rexlimddv | |
65 | 64 | ralrimiva | |
66 | 1 | iscmet | |
67 | 2 65 66 | sylanbrc | |