Description: Express the representations as a sum of integers in a difference of sets using conditions on each of the indices. (Contributed by Thierry Arnoux, 27-Dec-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | reprdifc.c | |
|
reprdifc.a | |
||
reprdifc.b | |
||
reprdifc.m | |
||
reprdifc.s | |
||
Assertion | reprdifc | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reprdifc.c | |
|
2 | reprdifc.a | |
|
3 | reprdifc.b | |
|
4 | reprdifc.m | |
|
5 | reprdifc.s | |
|
6 | nfv | |
|
7 | nfrab1 | |
|
8 | nfcv | |
|
9 | 4 | nn0zd | |
10 | 2 9 5 | reprval | |
11 | 10 | eleq2d | |
12 | rabid | |
|
13 | 11 12 | bitrdi | |
14 | 13 | anbi1d | |
15 | eldif | |
|
16 | 15 | anbi1i | |
17 | an32 | |
|
18 | 16 17 | bitri | |
19 | 18 | a1i | |
20 | 14 19 | bitr4d | |
21 | nnex | |
|
22 | 21 | a1i | |
23 | 22 3 | ssexd | |
24 | ovexd | |
|
25 | elmapg | |
|
26 | 23 24 25 | syl2anc | |
27 | 26 | adantr | |
28 | ffnfv | |
|
29 | 2 | adantr | |
30 | 9 | adantr | |
31 | 5 | adantr | |
32 | simpr | |
|
33 | 29 30 31 32 | reprf | |
34 | 33 | ffnd | |
35 | 34 | biantrurd | |
36 | 28 35 | bitr4id | |
37 | 27 36 | bitrd | |
38 | 37 | notbid | |
39 | rexnal | |
|
40 | 38 39 | bitr4di | |
41 | 40 | pm5.32da | |
42 | 20 41 | bitr3d | |
43 | fveq1 | |
|
44 | 43 | eleq1d | |
45 | 44 | notbid | |
46 | 45 | elrab | |
47 | 46 | rexbii | |
48 | r19.42v | |
|
49 | 47 48 | bitri | |
50 | 42 49 | bitr4di | |
51 | rabid | |
|
52 | eliun | |
|
53 | 50 51 52 | 3bitr4g | |
54 | 6 7 8 53 | eqrd | |
55 | 3 9 5 | reprval | |
56 | 10 55 | difeq12d | |
57 | difrab2 | |
|
58 | 56 57 | eqtrdi | |
59 | 1 | a1i | |
60 | 59 | iuneq2d | |
61 | 54 58 60 | 3eqtr4d | |