Metamath Proof Explorer


Theorem rlimclim1

Description: Forward direction of rlimclim . (Contributed by Mario Carneiro, 16-Sep-2014)

Ref Expression
Hypotheses rlimclim1.1 Z=M
rlimclim1.2 φM
rlimclim1.3 φFA
rlimclim1.4 φZdomF
Assertion rlimclim1 φFA

Proof

Step Hyp Ref Expression
1 rlimclim1.1 Z=M
2 rlimclim1.2 φM
3 rlimclim1.3 φFA
4 rlimclim1.4 φZdomF
5 fvex FwV
6 5 rgenw wdomFFwV
7 6 a1i φy+wdomFFwV
8 simpr φy+y+
9 rlimf FAF:domF
10 3 9 syl φF:domF
11 10 adantr φy+F:domF
12 11 feqmptd φy+F=wdomFFw
13 3 adantr φy+FA
14 12 13 eqbrtrrd φy+wdomFFwA
15 7 8 14 rlimi φy+zwdomFzwFwA<y
16 2 ad2antrr φy+zwdomFzwFwA<yM
17 flcl zz
18 17 peano2zd zz+1
19 18 ad2antrl φy+zwdomFzwFwA<yz+1
20 19 16 ifcld φy+zwdomFzwFwA<yifMz+1z+1M
21 16 zred φy+zwdomFzwFwA<yM
22 19 zred φy+zwdomFzwFwA<yz+1
23 max1 Mz+1MifMz+1z+1M
24 21 22 23 syl2anc φy+zwdomFzwFwA<yMifMz+1z+1M
25 eluz2 ifMz+1z+1MMMifMz+1z+1MMifMz+1z+1M
26 16 20 24 25 syl3anbrc φy+zwdomFzwFwA<yifMz+1z+1MM
27 26 1 eleqtrrdi φy+zwdomFzwFwA<yifMz+1z+1MZ
28 simplrl φy+zwdomFzwFwA<ykifMz+1z+1Mz
29 18 zred zz+1
30 28 29 syl φy+zwdomFzwFwA<ykifMz+1z+1Mz+1
31 21 adantr φy+zwdomFzwFwA<ykifMz+1z+1MM
32 30 31 ifcld φy+zwdomFzwFwA<ykifMz+1z+1MifMz+1z+1M
33 eluzelre kifMz+1z+1Mk
34 33 adantl φy+zwdomFzwFwA<ykifMz+1z+1Mk
35 fllep1 zzz+1
36 28 35 syl φy+zwdomFzwFwA<ykifMz+1z+1Mzz+1
37 max2 Mz+1z+1ifMz+1z+1M
38 31 30 37 syl2anc φy+zwdomFzwFwA<ykifMz+1z+1Mz+1ifMz+1z+1M
39 28 30 32 36 38 letrd φy+zwdomFzwFwA<ykifMz+1z+1MzifMz+1z+1M
40 eluzle kifMz+1z+1MifMz+1z+1Mk
41 40 adantl φy+zwdomFzwFwA<ykifMz+1z+1MifMz+1z+1Mk
42 28 32 34 39 41 letrd φy+zwdomFzwFwA<ykifMz+1z+1Mzk
43 breq2 w=kzwzk
44 43 imbrov2fvoveq w=kzwFwA<yzkFkA<y
45 simplrr φy+zwdomFzwFwA<ykifMz+1z+1MwdomFzwFwA<y
46 4 ad3antrrr φy+zwdomFzwFwA<ykifMz+1z+1MZdomF
47 1 uztrn2 ifMz+1z+1MZkifMz+1z+1MkZ
48 27 47 sylan φy+zwdomFzwFwA<ykifMz+1z+1MkZ
49 46 48 sseldd φy+zwdomFzwFwA<ykifMz+1z+1MkdomF
50 44 45 49 rspcdva φy+zwdomFzwFwA<ykifMz+1z+1MzkFkA<y
51 42 50 mpd φy+zwdomFzwFwA<ykifMz+1z+1MFkA<y
52 51 ralrimiva φy+zwdomFzwFwA<ykifMz+1z+1MFkA<y
53 fveq2 j=ifMz+1z+1Mj=ifMz+1z+1M
54 53 raleqdv j=ifMz+1z+1MkjFkA<ykifMz+1z+1MFkA<y
55 54 rspcev ifMz+1z+1MZkifMz+1z+1MFkA<yjZkjFkA<y
56 27 52 55 syl2anc φy+zwdomFzwFwA<yjZkjFkA<y
57 15 56 rexlimddv φy+jZkjFkA<y
58 57 ralrimiva φy+jZkjFkA<y
59 rlimpm FAF𝑝𝑚
60 3 59 syl φF𝑝𝑚
61 eqidd φkZFk=Fk
62 rlimcl FAA
63 3 62 syl φA
64 4 sselda φkZkdomF
65 10 ffvelcdmda φkdomFFk
66 64 65 syldan φkZFk
67 1 2 60 61 63 66 clim2c φFAy+jZkjFkA<y
68 58 67 mpbird φFA