Metamath Proof Explorer


Theorem rrxmval

Description: The value of the Euclidean metric. Compare with rrnmval . (Contributed by Thierry Arnoux, 30-Jun-2019)

Ref Expression
Hypotheses rrxmval.1 X=hI|finSupp0h
rrxmval.d D=distmsup
Assertion rrxmval IVFXGXFDG=ksupp0Fsupp0GFkGk2

Proof

Step Hyp Ref Expression
1 rrxmval.1 X=hI|finSupp0h
2 rrxmval.d D=distmsup
3 eqid msup=msup
4 eqid Basemsup=Basemsup
5 3 4 rrxds IVfBasemsup,gBasemsupfldxIfxgx2=distmsup
6 2 5 eqtr4id IVD=fBasemsup,gBasemsupfldxIfxgx2
7 3 4 rrxbase IVBasemsup=hI|finSupp0h
8 1 7 eqtr4id IVX=Basemsup
9 mpoeq12 X=BasemsupX=BasemsupfX,gXfldxIfxgx2=fBasemsup,gBasemsupfldxIfxgx2
10 8 8 9 syl2anc IVfX,gXfldxIfxgx2=fBasemsup,gBasemsupfldxIfxgx2
11 6 10 eqtr4d IVD=fX,gXfldxIfxgx2
12 11 3ad2ant1 IVFXGXD=fX,gXfldxIfxgx2
13 simprl IVFXGXf=Fg=Gf=F
14 13 fveq1d IVFXGXf=Fg=Gfx=Fx
15 simprr IVFXGXf=Fg=Gg=G
16 15 fveq1d IVFXGXf=Fg=Ggx=Gx
17 14 16 oveq12d IVFXGXf=Fg=Gfxgx=FxGx
18 17 oveq1d IVFXGXf=Fg=Gfxgx2=FxGx2
19 18 mpteq2dv IVFXGXf=Fg=GxIfxgx2=xIFxGx2
20 19 oveq2d IVFXGXf=Fg=GfldxIfxgx2=fldxIFxGx2
21 simp2 IVFXGXFX
22 1 21 rrxf IVFXGXF:I
23 22 ffvelcdmda IVFXGXxIFx
24 simp3 IVFXGXGX
25 1 24 rrxf IVFXGXG:I
26 25 ffvelcdmda IVFXGXxIGx
27 23 26 resubcld IVFXGXxIFxGx
28 27 resqcld IVFXGXxIFxGx2
29 28 fmpttd IVFXGXxIFxGx2:I
30 1 21 rrxfsupp IVFXGXFsupp0Fin
31 1 24 rrxfsupp IVFXGXGsupp0Fin
32 unfi Fsupp0FinGsupp0Finsupp0Fsupp0GFin
33 30 31 32 syl2anc IVFXGXsupp0Fsupp0GFin
34 1 rrxmvallem IVFXGXxIFxGx2supp0supp0Fsupp0G
35 33 34 ssfid IVFXGXxIFxGx2supp0Fin
36 mptexg IVxIFxGx2V
37 funmpt FunxIFxGx2
38 0cn 0
39 funisfsupp FunxIFxGx2xIFxGx2V0finSupp0xIFxGx2xIFxGx2supp0Fin
40 37 38 39 mp3an13 xIFxGx2VfinSupp0xIFxGx2xIFxGx2supp0Fin
41 36 40 syl IVfinSupp0xIFxGx2xIFxGx2supp0Fin
42 41 3ad2ant1 IVFXGXfinSupp0xIFxGx2xIFxGx2supp0Fin
43 35 42 mpbird IVFXGXfinSupp0xIFxGx2
44 simp1 IVFXGXIV
45 regsumsupp xIFxGx2:IfinSupp0xIFxGx2IVfldxIFxGx2=kxIFxGx2supp0xIFxGx2k
46 29 43 44 45 syl3anc IVFXGXfldxIFxGx2=kxIFxGx2supp0xIFxGx2k
47 suppssdm xIFxGx2supp0domxIFxGx2
48 eqid xIFxGx2=xIFxGx2
49 48 dmmptss domxIFxGx2I
50 47 49 sstri xIFxGx2supp0I
51 50 a1i IVFXGXxIFxGx2supp0I
52 51 sselda IVFXGXksupp0xIFxGx2kI
53 eqidd IVFXGXkIxIFxGx2=xIFxGx2
54 simpr IVFXGXkIx=kx=k
55 54 fveq2d IVFXGXkIx=kFx=Fk
56 54 fveq2d IVFXGXkIx=kGx=Gk
57 55 56 oveq12d IVFXGXkIx=kFxGx=FkGk
58 57 oveq1d IVFXGXkIx=kFxGx2=FkGk2
59 simpr IVFXGXkIkI
60 ovexd IVFXGXkIFkGk2V
61 53 58 59 60 fvmptd IVFXGXkIxIFxGx2k=FkGk2
62 61 eqcomd IVFXGXkIFkGk2=xIFxGx2k
63 52 62 syldan IVFXGXksupp0xIFxGx2FkGk2=xIFxGx2k
64 63 sumeq2dv IVFXGXkxIFxGx2supp0FkGk2=kxIFxGx2supp0xIFxGx2k
65 46 64 eqtr4d IVFXGXfldxIFxGx2=kxIFxGx2supp0FkGk2
66 65 adantr IVFXGXf=Fg=GfldxIFxGx2=kxIFxGx2supp0FkGk2
67 22 ffvelcdmda IVFXGXkIFk
68 67 recnd IVFXGXkIFk
69 25 ffvelcdmda IVFXGXkIGk
70 69 recnd IVFXGXkIGk
71 68 70 subcld IVFXGXkIFkGk
72 71 sqcld IVFXGXkIFkGk2
73 52 72 syldan IVFXGXksupp0xIFxGx2FkGk2
74 1 21 rrxsuppss IVFXGXFsupp0I
75 1 24 rrxsuppss IVFXGXGsupp0I
76 74 75 unssd IVFXGXsupp0Fsupp0GI
77 76 ssdifssd IVFXGXsupp0Fsupp0Gsupp0xIFxGx2I
78 77 sselda IVFXGXksupp0Fsupp0Gsupp0xIFxGx2kI
79 78 62 syldan IVFXGXksupp0Fsupp0Gsupp0xIFxGx2FkGk2=xIFxGx2k
80 76 ssdifd IVFXGXsupp0Fsupp0Gsupp0xIFxGx2Isupp0xIFxGx2
81 80 sselda IVFXGXksupp0Fsupp0Gsupp0xIFxGx2kIsupp0xIFxGx2
82 ssidd IVFXGXxIFxGx2supp0xIFxGx2supp0
83 0cnd IVFXGX0
84 29 82 44 83 suppssr IVFXGXkIsupp0xIFxGx2xIFxGx2k=0
85 81 84 syldan IVFXGXksupp0Fsupp0Gsupp0xIFxGx2xIFxGx2k=0
86 79 85 eqtrd IVFXGXksupp0Fsupp0Gsupp0xIFxGx2FkGk2=0
87 34 73 86 33 fsumss IVFXGXkxIFxGx2supp0FkGk2=ksupp0Fsupp0GFkGk2
88 87 adantr IVFXGXf=Fg=GkxIFxGx2supp0FkGk2=ksupp0Fsupp0GFkGk2
89 20 66 88 3eqtrd IVFXGXf=Fg=GfldxIfxgx2=ksupp0Fsupp0GFkGk2
90 89 fveq2d IVFXGXf=Fg=GfldxIfxgx2=ksupp0Fsupp0GFkGk2
91 fvexd IVFXGXksupp0Fsupp0GFkGk2V
92 12 90 21 24 91 ovmpod IVFXGXFDG=ksupp0Fsupp0GFkGk2