Database
ELEMENTARY NUMBER THEORY
Elementary properties of divisibility
Bit sequences
sadasslem
Next ⟩
sadass
Metamath Proof Explorer
Ascii
Unicode
Theorem
sadasslem
Description:
Lemma for
sadass
.
(Contributed by
Mario Carneiro
, 9-Sep-2016)
Ref
Expression
Hypotheses
sadasslem.1
⊢
φ
→
A
⊆
ℕ
0
sadasslem.2
⊢
φ
→
B
⊆
ℕ
0
sadasslem.3
⊢
φ
→
C
⊆
ℕ
0
sadasslem.4
⊢
φ
→
N
∈
ℕ
0
Assertion
sadasslem
⊢
φ
→
A
sadd
B
sadd
C
∩
0
..^
N
=
A
sadd
B
sadd
C
∩
0
..^
N
Proof
Step
Hyp
Ref
Expression
1
sadasslem.1
⊢
φ
→
A
⊆
ℕ
0
2
sadasslem.2
⊢
φ
→
B
⊆
ℕ
0
3
sadasslem.3
⊢
φ
→
C
⊆
ℕ
0
4
sadasslem.4
⊢
φ
→
N
∈
ℕ
0
5
inss1
⊢
A
∩
0
..^
N
⊆
A
6
5
1
sstrid
⊢
φ
→
A
∩
0
..^
N
⊆
ℕ
0
7
fzofi
⊢
0
..^
N
∈
Fin
8
7
a1i
⊢
φ
→
0
..^
N
∈
Fin
9
inss2
⊢
A
∩
0
..^
N
⊆
0
..^
N
10
ssfi
⊢
0
..^
N
∈
Fin
∧
A
∩
0
..^
N
⊆
0
..^
N
→
A
∩
0
..^
N
∈
Fin
11
8
9
10
sylancl
⊢
φ
→
A
∩
0
..^
N
∈
Fin
12
elfpw
⊢
A
∩
0
..^
N
∈
𝒫
ℕ
0
∩
Fin
↔
A
∩
0
..^
N
⊆
ℕ
0
∧
A
∩
0
..^
N
∈
Fin
13
6
11
12
sylanbrc
⊢
φ
→
A
∩
0
..^
N
∈
𝒫
ℕ
0
∩
Fin
14
bitsf1o
⊢
bits
↾
ℕ
0
:
ℕ
0
⟶
1-1 onto
𝒫
ℕ
0
∩
Fin
15
f1ocnv
⊢
bits
↾
ℕ
0
:
ℕ
0
⟶
1-1 onto
𝒫
ℕ
0
∩
Fin
→
bits
↾
ℕ
0
-1
:
𝒫
ℕ
0
∩
Fin
⟶
1-1 onto
ℕ
0
16
f1of
⊢
bits
↾
ℕ
0
-1
:
𝒫
ℕ
0
∩
Fin
⟶
1-1 onto
ℕ
0
→
bits
↾
ℕ
0
-1
:
𝒫
ℕ
0
∩
Fin
⟶
ℕ
0
17
14
15
16
mp2b
⊢
bits
↾
ℕ
0
-1
:
𝒫
ℕ
0
∩
Fin
⟶
ℕ
0
18
17
ffvelcdmi
⊢
A
∩
0
..^
N
∈
𝒫
ℕ
0
∩
Fin
→
bits
↾
ℕ
0
-1
A
∩
0
..^
N
∈
ℕ
0
19
13
18
syl
⊢
φ
→
bits
↾
ℕ
0
-1
A
∩
0
..^
N
∈
ℕ
0
20
19
nn0cnd
⊢
φ
→
bits
↾
ℕ
0
-1
A
∩
0
..^
N
∈
ℂ
21
inss1
⊢
B
∩
0
..^
N
⊆
B
22
21
2
sstrid
⊢
φ
→
B
∩
0
..^
N
⊆
ℕ
0
23
inss2
⊢
B
∩
0
..^
N
⊆
0
..^
N
24
ssfi
⊢
0
..^
N
∈
Fin
∧
B
∩
0
..^
N
⊆
0
..^
N
→
B
∩
0
..^
N
∈
Fin
25
8
23
24
sylancl
⊢
φ
→
B
∩
0
..^
N
∈
Fin
26
elfpw
⊢
B
∩
0
..^
N
∈
𝒫
ℕ
0
∩
Fin
↔
B
∩
0
..^
N
⊆
ℕ
0
∧
B
∩
0
..^
N
∈
Fin
27
22
25
26
sylanbrc
⊢
φ
→
B
∩
0
..^
N
∈
𝒫
ℕ
0
∩
Fin
28
17
ffvelcdmi
⊢
B
∩
0
..^
N
∈
𝒫
ℕ
0
∩
Fin
→
bits
↾
ℕ
0
-1
B
∩
0
..^
N
∈
ℕ
0
29
27
28
syl
⊢
φ
→
bits
↾
ℕ
0
-1
B
∩
0
..^
N
∈
ℕ
0
30
29
nn0cnd
⊢
φ
→
bits
↾
ℕ
0
-1
B
∩
0
..^
N
∈
ℂ
31
inss1
⊢
C
∩
0
..^
N
⊆
C
32
31
3
sstrid
⊢
φ
→
C
∩
0
..^
N
⊆
ℕ
0
33
inss2
⊢
C
∩
0
..^
N
⊆
0
..^
N
34
ssfi
⊢
0
..^
N
∈
Fin
∧
C
∩
0
..^
N
⊆
0
..^
N
→
C
∩
0
..^
N
∈
Fin
35
8
33
34
sylancl
⊢
φ
→
C
∩
0
..^
N
∈
Fin
36
elfpw
⊢
C
∩
0
..^
N
∈
𝒫
ℕ
0
∩
Fin
↔
C
∩
0
..^
N
⊆
ℕ
0
∧
C
∩
0
..^
N
∈
Fin
37
32
35
36
sylanbrc
⊢
φ
→
C
∩
0
..^
N
∈
𝒫
ℕ
0
∩
Fin
38
17
ffvelcdmi
⊢
C
∩
0
..^
N
∈
𝒫
ℕ
0
∩
Fin
→
bits
↾
ℕ
0
-1
C
∩
0
..^
N
∈
ℕ
0
39
37
38
syl
⊢
φ
→
bits
↾
ℕ
0
-1
C
∩
0
..^
N
∈
ℕ
0
40
39
nn0cnd
⊢
φ
→
bits
↾
ℕ
0
-1
C
∩
0
..^
N
∈
ℂ
41
20
30
40
addassd
⊢
φ
→
bits
↾
ℕ
0
-1
A
∩
0
..^
N
+
bits
↾
ℕ
0
-1
B
∩
0
..^
N
+
bits
↾
ℕ
0
-1
C
∩
0
..^
N
=
bits
↾
ℕ
0
-1
A
∩
0
..^
N
+
bits
↾
ℕ
0
-1
B
∩
0
..^
N
+
bits
↾
ℕ
0
-1
C
∩
0
..^
N
42
41
oveq1d
⊢
φ
→
bits
↾
ℕ
0
-1
A
∩
0
..^
N
+
bits
↾
ℕ
0
-1
B
∩
0
..^
N
+
bits
↾
ℕ
0
-1
C
∩
0
..^
N
mod
2
N
=
bits
↾
ℕ
0
-1
A
∩
0
..^
N
+
bits
↾
ℕ
0
-1
B
∩
0
..^
N
+
bits
↾
ℕ
0
-1
C
∩
0
..^
N
mod
2
N
43
inss1
⊢
A
sadd
B
∩
0
..^
N
⊆
A
sadd
B
44
sadcl
⊢
A
⊆
ℕ
0
∧
B
⊆
ℕ
0
→
A
sadd
B
⊆
ℕ
0
45
1
2
44
syl2anc
⊢
φ
→
A
sadd
B
⊆
ℕ
0
46
43
45
sstrid
⊢
φ
→
A
sadd
B
∩
0
..^
N
⊆
ℕ
0
47
inss2
⊢
A
sadd
B
∩
0
..^
N
⊆
0
..^
N
48
ssfi
⊢
0
..^
N
∈
Fin
∧
A
sadd
B
∩
0
..^
N
⊆
0
..^
N
→
A
sadd
B
∩
0
..^
N
∈
Fin
49
8
47
48
sylancl
⊢
φ
→
A
sadd
B
∩
0
..^
N
∈
Fin
50
elfpw
⊢
A
sadd
B
∩
0
..^
N
∈
𝒫
ℕ
0
∩
Fin
↔
A
sadd
B
∩
0
..^
N
⊆
ℕ
0
∧
A
sadd
B
∩
0
..^
N
∈
Fin
51
46
49
50
sylanbrc
⊢
φ
→
A
sadd
B
∩
0
..^
N
∈
𝒫
ℕ
0
∩
Fin
52
17
ffvelcdmi
⊢
A
sadd
B
∩
0
..^
N
∈
𝒫
ℕ
0
∩
Fin
→
bits
↾
ℕ
0
-1
A
sadd
B
∩
0
..^
N
∈
ℕ
0
53
51
52
syl
⊢
φ
→
bits
↾
ℕ
0
-1
A
sadd
B
∩
0
..^
N
∈
ℕ
0
54
53
nn0red
⊢
φ
→
bits
↾
ℕ
0
-1
A
sadd
B
∩
0
..^
N
∈
ℝ
55
19
nn0red
⊢
φ
→
bits
↾
ℕ
0
-1
A
∩
0
..^
N
∈
ℝ
56
29
nn0red
⊢
φ
→
bits
↾
ℕ
0
-1
B
∩
0
..^
N
∈
ℝ
57
55
56
readdcld
⊢
φ
→
bits
↾
ℕ
0
-1
A
∩
0
..^
N
+
bits
↾
ℕ
0
-1
B
∩
0
..^
N
∈
ℝ
58
39
nn0red
⊢
φ
→
bits
↾
ℕ
0
-1
C
∩
0
..^
N
∈
ℝ
59
2rp
⊢
2
∈
ℝ
+
60
59
a1i
⊢
φ
→
2
∈
ℝ
+
61
4
nn0zd
⊢
φ
→
N
∈
ℤ
62
60
61
rpexpcld
⊢
φ
→
2
N
∈
ℝ
+
63
eqid
⊢
seq
0
c
∈
2
𝑜
,
m
∈
ℕ
0
⟼
if
cadd
m
∈
A
m
∈
B
∅
∈
c
1
𝑜
∅
n
∈
ℕ
0
⟼
if
n
=
0
∅
n
−
1
=
seq
0
c
∈
2
𝑜
,
m
∈
ℕ
0
⟼
if
cadd
m
∈
A
m
∈
B
∅
∈
c
1
𝑜
∅
n
∈
ℕ
0
⟼
if
n
=
0
∅
n
−
1
64
eqid
⊢
bits
↾
ℕ
0
-1
=
bits
↾
ℕ
0
-1
65
1
2
63
4
64
sadadd3
⊢
φ
→
bits
↾
ℕ
0
-1
A
sadd
B
∩
0
..^
N
mod
2
N
=
bits
↾
ℕ
0
-1
A
∩
0
..^
N
+
bits
↾
ℕ
0
-1
B
∩
0
..^
N
mod
2
N
66
eqidd
⊢
φ
→
bits
↾
ℕ
0
-1
C
∩
0
..^
N
mod
2
N
=
bits
↾
ℕ
0
-1
C
∩
0
..^
N
mod
2
N
67
54
57
58
58
62
65
66
modadd12d
⊢
φ
→
bits
↾
ℕ
0
-1
A
sadd
B
∩
0
..^
N
+
bits
↾
ℕ
0
-1
C
∩
0
..^
N
mod
2
N
=
bits
↾
ℕ
0
-1
A
∩
0
..^
N
+
bits
↾
ℕ
0
-1
B
∩
0
..^
N
+
bits
↾
ℕ
0
-1
C
∩
0
..^
N
mod
2
N
68
inss1
⊢
B
sadd
C
∩
0
..^
N
⊆
B
sadd
C
69
sadcl
⊢
B
⊆
ℕ
0
∧
C
⊆
ℕ
0
→
B
sadd
C
⊆
ℕ
0
70
2
3
69
syl2anc
⊢
φ
→
B
sadd
C
⊆
ℕ
0
71
68
70
sstrid
⊢
φ
→
B
sadd
C
∩
0
..^
N
⊆
ℕ
0
72
inss2
⊢
B
sadd
C
∩
0
..^
N
⊆
0
..^
N
73
ssfi
⊢
0
..^
N
∈
Fin
∧
B
sadd
C
∩
0
..^
N
⊆
0
..^
N
→
B
sadd
C
∩
0
..^
N
∈
Fin
74
8
72
73
sylancl
⊢
φ
→
B
sadd
C
∩
0
..^
N
∈
Fin
75
elfpw
⊢
B
sadd
C
∩
0
..^
N
∈
𝒫
ℕ
0
∩
Fin
↔
B
sadd
C
∩
0
..^
N
⊆
ℕ
0
∧
B
sadd
C
∩
0
..^
N
∈
Fin
76
71
74
75
sylanbrc
⊢
φ
→
B
sadd
C
∩
0
..^
N
∈
𝒫
ℕ
0
∩
Fin
77
17
ffvelcdmi
⊢
B
sadd
C
∩
0
..^
N
∈
𝒫
ℕ
0
∩
Fin
→
bits
↾
ℕ
0
-1
B
sadd
C
∩
0
..^
N
∈
ℕ
0
78
76
77
syl
⊢
φ
→
bits
↾
ℕ
0
-1
B
sadd
C
∩
0
..^
N
∈
ℕ
0
79
78
nn0red
⊢
φ
→
bits
↾
ℕ
0
-1
B
sadd
C
∩
0
..^
N
∈
ℝ
80
56
58
readdcld
⊢
φ
→
bits
↾
ℕ
0
-1
B
∩
0
..^
N
+
bits
↾
ℕ
0
-1
C
∩
0
..^
N
∈
ℝ
81
eqidd
⊢
φ
→
bits
↾
ℕ
0
-1
A
∩
0
..^
N
mod
2
N
=
bits
↾
ℕ
0
-1
A
∩
0
..^
N
mod
2
N
82
eqid
⊢
seq
0
c
∈
2
𝑜
,
m
∈
ℕ
0
⟼
if
cadd
m
∈
B
m
∈
C
∅
∈
c
1
𝑜
∅
n
∈
ℕ
0
⟼
if
n
=
0
∅
n
−
1
=
seq
0
c
∈
2
𝑜
,
m
∈
ℕ
0
⟼
if
cadd
m
∈
B
m
∈
C
∅
∈
c
1
𝑜
∅
n
∈
ℕ
0
⟼
if
n
=
0
∅
n
−
1
83
2
3
82
4
64
sadadd3
⊢
φ
→
bits
↾
ℕ
0
-1
B
sadd
C
∩
0
..^
N
mod
2
N
=
bits
↾
ℕ
0
-1
B
∩
0
..^
N
+
bits
↾
ℕ
0
-1
C
∩
0
..^
N
mod
2
N
84
55
55
79
80
62
81
83
modadd12d
⊢
φ
→
bits
↾
ℕ
0
-1
A
∩
0
..^
N
+
bits
↾
ℕ
0
-1
B
sadd
C
∩
0
..^
N
mod
2
N
=
bits
↾
ℕ
0
-1
A
∩
0
..^
N
+
bits
↾
ℕ
0
-1
B
∩
0
..^
N
+
bits
↾
ℕ
0
-1
C
∩
0
..^
N
mod
2
N
85
42
67
84
3eqtr4d
⊢
φ
→
bits
↾
ℕ
0
-1
A
sadd
B
∩
0
..^
N
+
bits
↾
ℕ
0
-1
C
∩
0
..^
N
mod
2
N
=
bits
↾
ℕ
0
-1
A
∩
0
..^
N
+
bits
↾
ℕ
0
-1
B
sadd
C
∩
0
..^
N
mod
2
N
86
eqid
⊢
seq
0
c
∈
2
𝑜
,
m
∈
ℕ
0
⟼
if
cadd
m
∈
A
sadd
B
m
∈
C
∅
∈
c
1
𝑜
∅
n
∈
ℕ
0
⟼
if
n
=
0
∅
n
−
1
=
seq
0
c
∈
2
𝑜
,
m
∈
ℕ
0
⟼
if
cadd
m
∈
A
sadd
B
m
∈
C
∅
∈
c
1
𝑜
∅
n
∈
ℕ
0
⟼
if
n
=
0
∅
n
−
1
87
45
3
86
4
64
sadadd3
⊢
φ
→
bits
↾
ℕ
0
-1
A
sadd
B
sadd
C
∩
0
..^
N
mod
2
N
=
bits
↾
ℕ
0
-1
A
sadd
B
∩
0
..^
N
+
bits
↾
ℕ
0
-1
C
∩
0
..^
N
mod
2
N
88
eqid
⊢
seq
0
c
∈
2
𝑜
,
m
∈
ℕ
0
⟼
if
cadd
m
∈
A
m
∈
B
sadd
C
∅
∈
c
1
𝑜
∅
n
∈
ℕ
0
⟼
if
n
=
0
∅
n
−
1
=
seq
0
c
∈
2
𝑜
,
m
∈
ℕ
0
⟼
if
cadd
m
∈
A
m
∈
B
sadd
C
∅
∈
c
1
𝑜
∅
n
∈
ℕ
0
⟼
if
n
=
0
∅
n
−
1
89
1
70
88
4
64
sadadd3
⊢
φ
→
bits
↾
ℕ
0
-1
A
sadd
B
sadd
C
∩
0
..^
N
mod
2
N
=
bits
↾
ℕ
0
-1
A
∩
0
..^
N
+
bits
↾
ℕ
0
-1
B
sadd
C
∩
0
..^
N
mod
2
N
90
85
87
89
3eqtr4d
⊢
φ
→
bits
↾
ℕ
0
-1
A
sadd
B
sadd
C
∩
0
..^
N
mod
2
N
=
bits
↾
ℕ
0
-1
A
sadd
B
sadd
C
∩
0
..^
N
mod
2
N
91
inss1
⊢
A
sadd
B
sadd
C
∩
0
..^
N
⊆
A
sadd
B
sadd
C
92
sadcl
⊢
A
sadd
B
⊆
ℕ
0
∧
C
⊆
ℕ
0
→
A
sadd
B
sadd
C
⊆
ℕ
0
93
45
3
92
syl2anc
⊢
φ
→
A
sadd
B
sadd
C
⊆
ℕ
0
94
91
93
sstrid
⊢
φ
→
A
sadd
B
sadd
C
∩
0
..^
N
⊆
ℕ
0
95
inss2
⊢
A
sadd
B
sadd
C
∩
0
..^
N
⊆
0
..^
N
96
ssfi
⊢
0
..^
N
∈
Fin
∧
A
sadd
B
sadd
C
∩
0
..^
N
⊆
0
..^
N
→
A
sadd
B
sadd
C
∩
0
..^
N
∈
Fin
97
8
95
96
sylancl
⊢
φ
→
A
sadd
B
sadd
C
∩
0
..^
N
∈
Fin
98
elfpw
⊢
A
sadd
B
sadd
C
∩
0
..^
N
∈
𝒫
ℕ
0
∩
Fin
↔
A
sadd
B
sadd
C
∩
0
..^
N
⊆
ℕ
0
∧
A
sadd
B
sadd
C
∩
0
..^
N
∈
Fin
99
94
97
98
sylanbrc
⊢
φ
→
A
sadd
B
sadd
C
∩
0
..^
N
∈
𝒫
ℕ
0
∩
Fin
100
17
ffvelcdmi
⊢
A
sadd
B
sadd
C
∩
0
..^
N
∈
𝒫
ℕ
0
∩
Fin
→
bits
↾
ℕ
0
-1
A
sadd
B
sadd
C
∩
0
..^
N
∈
ℕ
0
101
99
100
syl
⊢
φ
→
bits
↾
ℕ
0
-1
A
sadd
B
sadd
C
∩
0
..^
N
∈
ℕ
0
102
101
nn0red
⊢
φ
→
bits
↾
ℕ
0
-1
A
sadd
B
sadd
C
∩
0
..^
N
∈
ℝ
103
101
nn0ge0d
⊢
φ
→
0
≤
bits
↾
ℕ
0
-1
A
sadd
B
sadd
C
∩
0
..^
N
104
101
fvresd
⊢
φ
→
bits
↾
ℕ
0
bits
↾
ℕ
0
-1
A
sadd
B
sadd
C
∩
0
..^
N
=
bits
bits
↾
ℕ
0
-1
A
sadd
B
sadd
C
∩
0
..^
N
105
f1ocnvfv2
⊢
bits
↾
ℕ
0
:
ℕ
0
⟶
1-1 onto
𝒫
ℕ
0
∩
Fin
∧
A
sadd
B
sadd
C
∩
0
..^
N
∈
𝒫
ℕ
0
∩
Fin
→
bits
↾
ℕ
0
bits
↾
ℕ
0
-1
A
sadd
B
sadd
C
∩
0
..^
N
=
A
sadd
B
sadd
C
∩
0
..^
N
106
14
99
105
sylancr
⊢
φ
→
bits
↾
ℕ
0
bits
↾
ℕ
0
-1
A
sadd
B
sadd
C
∩
0
..^
N
=
A
sadd
B
sadd
C
∩
0
..^
N
107
104
106
eqtr3d
⊢
φ
→
bits
bits
↾
ℕ
0
-1
A
sadd
B
sadd
C
∩
0
..^
N
=
A
sadd
B
sadd
C
∩
0
..^
N
108
107
95
eqsstrdi
⊢
φ
→
bits
bits
↾
ℕ
0
-1
A
sadd
B
sadd
C
∩
0
..^
N
⊆
0
..^
N
109
101
nn0zd
⊢
φ
→
bits
↾
ℕ
0
-1
A
sadd
B
sadd
C
∩
0
..^
N
∈
ℤ
110
bitsfzo
⊢
bits
↾
ℕ
0
-1
A
sadd
B
sadd
C
∩
0
..^
N
∈
ℤ
∧
N
∈
ℕ
0
→
bits
↾
ℕ
0
-1
A
sadd
B
sadd
C
∩
0
..^
N
∈
0
..^
2
N
↔
bits
bits
↾
ℕ
0
-1
A
sadd
B
sadd
C
∩
0
..^
N
⊆
0
..^
N
111
109
4
110
syl2anc
⊢
φ
→
bits
↾
ℕ
0
-1
A
sadd
B
sadd
C
∩
0
..^
N
∈
0
..^
2
N
↔
bits
bits
↾
ℕ
0
-1
A
sadd
B
sadd
C
∩
0
..^
N
⊆
0
..^
N
112
108
111
mpbird
⊢
φ
→
bits
↾
ℕ
0
-1
A
sadd
B
sadd
C
∩
0
..^
N
∈
0
..^
2
N
113
elfzolt2
⊢
bits
↾
ℕ
0
-1
A
sadd
B
sadd
C
∩
0
..^
N
∈
0
..^
2
N
→
bits
↾
ℕ
0
-1
A
sadd
B
sadd
C
∩
0
..^
N
<
2
N
114
112
113
syl
⊢
φ
→
bits
↾
ℕ
0
-1
A
sadd
B
sadd
C
∩
0
..^
N
<
2
N
115
modid
⊢
bits
↾
ℕ
0
-1
A
sadd
B
sadd
C
∩
0
..^
N
∈
ℝ
∧
2
N
∈
ℝ
+
∧
0
≤
bits
↾
ℕ
0
-1
A
sadd
B
sadd
C
∩
0
..^
N
∧
bits
↾
ℕ
0
-1
A
sadd
B
sadd
C
∩
0
..^
N
<
2
N
→
bits
↾
ℕ
0
-1
A
sadd
B
sadd
C
∩
0
..^
N
mod
2
N
=
bits
↾
ℕ
0
-1
A
sadd
B
sadd
C
∩
0
..^
N
116
102
62
103
114
115
syl22anc
⊢
φ
→
bits
↾
ℕ
0
-1
A
sadd
B
sadd
C
∩
0
..^
N
mod
2
N
=
bits
↾
ℕ
0
-1
A
sadd
B
sadd
C
∩
0
..^
N
117
inss1
⊢
A
sadd
B
sadd
C
∩
0
..^
N
⊆
A
sadd
B
sadd
C
118
sadcl
⊢
A
⊆
ℕ
0
∧
B
sadd
C
⊆
ℕ
0
→
A
sadd
B
sadd
C
⊆
ℕ
0
119
1
70
118
syl2anc
⊢
φ
→
A
sadd
B
sadd
C
⊆
ℕ
0
120
117
119
sstrid
⊢
φ
→
A
sadd
B
sadd
C
∩
0
..^
N
⊆
ℕ
0
121
inss2
⊢
A
sadd
B
sadd
C
∩
0
..^
N
⊆
0
..^
N
122
ssfi
⊢
0
..^
N
∈
Fin
∧
A
sadd
B
sadd
C
∩
0
..^
N
⊆
0
..^
N
→
A
sadd
B
sadd
C
∩
0
..^
N
∈
Fin
123
8
121
122
sylancl
⊢
φ
→
A
sadd
B
sadd
C
∩
0
..^
N
∈
Fin
124
elfpw
⊢
A
sadd
B
sadd
C
∩
0
..^
N
∈
𝒫
ℕ
0
∩
Fin
↔
A
sadd
B
sadd
C
∩
0
..^
N
⊆
ℕ
0
∧
A
sadd
B
sadd
C
∩
0
..^
N
∈
Fin
125
120
123
124
sylanbrc
⊢
φ
→
A
sadd
B
sadd
C
∩
0
..^
N
∈
𝒫
ℕ
0
∩
Fin
126
17
ffvelcdmi
⊢
A
sadd
B
sadd
C
∩
0
..^
N
∈
𝒫
ℕ
0
∩
Fin
→
bits
↾
ℕ
0
-1
A
sadd
B
sadd
C
∩
0
..^
N
∈
ℕ
0
127
125
126
syl
⊢
φ
→
bits
↾
ℕ
0
-1
A
sadd
B
sadd
C
∩
0
..^
N
∈
ℕ
0
128
127
nn0red
⊢
φ
→
bits
↾
ℕ
0
-1
A
sadd
B
sadd
C
∩
0
..^
N
∈
ℝ
129
2nn
⊢
2
∈
ℕ
130
129
a1i
⊢
φ
→
2
∈
ℕ
131
130
4
nnexpcld
⊢
φ
→
2
N
∈
ℕ
132
131
nnrpd
⊢
φ
→
2
N
∈
ℝ
+
133
127
nn0ge0d
⊢
φ
→
0
≤
bits
↾
ℕ
0
-1
A
sadd
B
sadd
C
∩
0
..^
N
134
127
fvresd
⊢
φ
→
bits
↾
ℕ
0
bits
↾
ℕ
0
-1
A
sadd
B
sadd
C
∩
0
..^
N
=
bits
bits
↾
ℕ
0
-1
A
sadd
B
sadd
C
∩
0
..^
N
135
f1ocnvfv2
⊢
bits
↾
ℕ
0
:
ℕ
0
⟶
1-1 onto
𝒫
ℕ
0
∩
Fin
∧
A
sadd
B
sadd
C
∩
0
..^
N
∈
𝒫
ℕ
0
∩
Fin
→
bits
↾
ℕ
0
bits
↾
ℕ
0
-1
A
sadd
B
sadd
C
∩
0
..^
N
=
A
sadd
B
sadd
C
∩
0
..^
N
136
14
125
135
sylancr
⊢
φ
→
bits
↾
ℕ
0
bits
↾
ℕ
0
-1
A
sadd
B
sadd
C
∩
0
..^
N
=
A
sadd
B
sadd
C
∩
0
..^
N
137
134
136
eqtr3d
⊢
φ
→
bits
bits
↾
ℕ
0
-1
A
sadd
B
sadd
C
∩
0
..^
N
=
A
sadd
B
sadd
C
∩
0
..^
N
138
137
121
eqsstrdi
⊢
φ
→
bits
bits
↾
ℕ
0
-1
A
sadd
B
sadd
C
∩
0
..^
N
⊆
0
..^
N
139
127
nn0zd
⊢
φ
→
bits
↾
ℕ
0
-1
A
sadd
B
sadd
C
∩
0
..^
N
∈
ℤ
140
bitsfzo
⊢
bits
↾
ℕ
0
-1
A
sadd
B
sadd
C
∩
0
..^
N
∈
ℤ
∧
N
∈
ℕ
0
→
bits
↾
ℕ
0
-1
A
sadd
B
sadd
C
∩
0
..^
N
∈
0
..^
2
N
↔
bits
bits
↾
ℕ
0
-1
A
sadd
B
sadd
C
∩
0
..^
N
⊆
0
..^
N
141
139
4
140
syl2anc
⊢
φ
→
bits
↾
ℕ
0
-1
A
sadd
B
sadd
C
∩
0
..^
N
∈
0
..^
2
N
↔
bits
bits
↾
ℕ
0
-1
A
sadd
B
sadd
C
∩
0
..^
N
⊆
0
..^
N
142
138
141
mpbird
⊢
φ
→
bits
↾
ℕ
0
-1
A
sadd
B
sadd
C
∩
0
..^
N
∈
0
..^
2
N
143
elfzolt2
⊢
bits
↾
ℕ
0
-1
A
sadd
B
sadd
C
∩
0
..^
N
∈
0
..^
2
N
→
bits
↾
ℕ
0
-1
A
sadd
B
sadd
C
∩
0
..^
N
<
2
N
144
142
143
syl
⊢
φ
→
bits
↾
ℕ
0
-1
A
sadd
B
sadd
C
∩
0
..^
N
<
2
N
145
modid
⊢
bits
↾
ℕ
0
-1
A
sadd
B
sadd
C
∩
0
..^
N
∈
ℝ
∧
2
N
∈
ℝ
+
∧
0
≤
bits
↾
ℕ
0
-1
A
sadd
B
sadd
C
∩
0
..^
N
∧
bits
↾
ℕ
0
-1
A
sadd
B
sadd
C
∩
0
..^
N
<
2
N
→
bits
↾
ℕ
0
-1
A
sadd
B
sadd
C
∩
0
..^
N
mod
2
N
=
bits
↾
ℕ
0
-1
A
sadd
B
sadd
C
∩
0
..^
N
146
128
132
133
144
145
syl22anc
⊢
φ
→
bits
↾
ℕ
0
-1
A
sadd
B
sadd
C
∩
0
..^
N
mod
2
N
=
bits
↾
ℕ
0
-1
A
sadd
B
sadd
C
∩
0
..^
N
147
90
116
146
3eqtr3d
⊢
φ
→
bits
↾
ℕ
0
-1
A
sadd
B
sadd
C
∩
0
..^
N
=
bits
↾
ℕ
0
-1
A
sadd
B
sadd
C
∩
0
..^
N
148
f1of1
⊢
bits
↾
ℕ
0
-1
:
𝒫
ℕ
0
∩
Fin
⟶
1-1 onto
ℕ
0
→
bits
↾
ℕ
0
-1
:
𝒫
ℕ
0
∩
Fin
⟶
1-1
ℕ
0
149
14
15
148
mp2b
⊢
bits
↾
ℕ
0
-1
:
𝒫
ℕ
0
∩
Fin
⟶
1-1
ℕ
0
150
f1fveq
⊢
bits
↾
ℕ
0
-1
:
𝒫
ℕ
0
∩
Fin
⟶
1-1
ℕ
0
∧
A
sadd
B
sadd
C
∩
0
..^
N
∈
𝒫
ℕ
0
∩
Fin
∧
A
sadd
B
sadd
C
∩
0
..^
N
∈
𝒫
ℕ
0
∩
Fin
→
bits
↾
ℕ
0
-1
A
sadd
B
sadd
C
∩
0
..^
N
=
bits
↾
ℕ
0
-1
A
sadd
B
sadd
C
∩
0
..^
N
↔
A
sadd
B
sadd
C
∩
0
..^
N
=
A
sadd
B
sadd
C
∩
0
..^
N
151
149
150
mpan
⊢
A
sadd
B
sadd
C
∩
0
..^
N
∈
𝒫
ℕ
0
∩
Fin
∧
A
sadd
B
sadd
C
∩
0
..^
N
∈
𝒫
ℕ
0
∩
Fin
→
bits
↾
ℕ
0
-1
A
sadd
B
sadd
C
∩
0
..^
N
=
bits
↾
ℕ
0
-1
A
sadd
B
sadd
C
∩
0
..^
N
↔
A
sadd
B
sadd
C
∩
0
..^
N
=
A
sadd
B
sadd
C
∩
0
..^
N
152
99
125
151
syl2anc
⊢
φ
→
bits
↾
ℕ
0
-1
A
sadd
B
sadd
C
∩
0
..^
N
=
bits
↾
ℕ
0
-1
A
sadd
B
sadd
C
∩
0
..^
N
↔
A
sadd
B
sadd
C
∩
0
..^
N
=
A
sadd
B
sadd
C
∩
0
..^
N
153
147
152
mpbid
⊢
φ
→
A
sadd
B
sadd
C
∩
0
..^
N
=
A
sadd
B
sadd
C
∩
0
..^
N