Metamath Proof Explorer


Theorem satfrnmapom

Description: The range of the satisfaction predicate as function over wff codes in any model M and any binary relation E on M for a natural number N is a subset of the power set of all mappings from the natural numbers into the model M . (Contributed by AV, 13-Oct-2023)

Ref Expression
Assertion satfrnmapom MVEWNωranMSatEN𝒫Mω

Proof

Step Hyp Ref Expression
1 fveq2 a=MSatEa=MSatE
2 1 rneqd a=ranMSatEa=ranMSatE
3 2 eleq2d a=nranMSatEanranMSatE
4 3 imbi1d a=nranMSatEan𝒫MωnranMSatEn𝒫Mω
5 4 imbi2d a=MVEWnranMSatEan𝒫MωMVEWnranMSatEn𝒫Mω
6 fveq2 a=bMSatEa=MSatEb
7 6 rneqd a=branMSatEa=ranMSatEb
8 7 eleq2d a=bnranMSatEanranMSatEb
9 8 imbi1d a=bnranMSatEan𝒫MωnranMSatEbn𝒫Mω
10 9 imbi2d a=bMVEWnranMSatEan𝒫MωMVEWnranMSatEbn𝒫Mω
11 fveq2 a=sucbMSatEa=MSatEsucb
12 11 rneqd a=sucbranMSatEa=ranMSatEsucb
13 12 eleq2d a=sucbnranMSatEanranMSatEsucb
14 13 imbi1d a=sucbnranMSatEan𝒫MωnranMSatEsucbn𝒫Mω
15 14 imbi2d a=sucbMVEWnranMSatEan𝒫MωMVEWnranMSatEsucbn𝒫Mω
16 fveq2 a=NMSatEa=MSatEN
17 16 rneqd a=NranMSatEa=ranMSatEN
18 17 eleq2d a=NnranMSatEanranMSatEN
19 18 imbi1d a=NnranMSatEan𝒫MωnranMSatENn𝒫Mω
20 19 imbi2d a=NMVEWnranMSatEan𝒫MωMVEWnranMSatENn𝒫Mω
21 eqid MSatE=MSatE
22 21 satfv0 MVEWMSatE=xy|iωjωx=i𝑔jy=fMω|fiEfj
23 22 rneqd MVEWranMSatE=ranxy|iωjωx=i𝑔jy=fMω|fiEfj
24 23 eleq2d MVEWnranMSatEnranxy|iωjωx=i𝑔jy=fMω|fiEfj
25 rnopab ranxy|iωjωx=i𝑔jy=fMω|fiEfj=y|xiωjωx=i𝑔jy=fMω|fiEfj
26 25 eleq2i nranxy|iωjωx=i𝑔jy=fMω|fiEfjny|xiωjωx=i𝑔jy=fMω|fiEfj
27 vex nV
28 eqeq1 y=ny=fMω|fiEfjn=fMω|fiEfj
29 28 anbi2d y=nx=i𝑔jy=fMω|fiEfjx=i𝑔jn=fMω|fiEfj
30 29 2rexbidv y=niωjωx=i𝑔jy=fMω|fiEfjiωjωx=i𝑔jn=fMω|fiEfj
31 30 exbidv y=nxiωjωx=i𝑔jy=fMω|fiEfjxiωjωx=i𝑔jn=fMω|fiEfj
32 27 31 elab ny|xiωjωx=i𝑔jy=fMω|fiEfjxiωjωx=i𝑔jn=fMω|fiEfj
33 ovex MωV
34 ssrab2 fMω|fiEfjMω
35 33 34 elpwi2 fMω|fiEfj𝒫Mω
36 eleq1 n=fMω|fiEfjn𝒫MωfMω|fiEfj𝒫Mω
37 35 36 mpbiri n=fMω|fiEfjn𝒫Mω
38 37 adantl x=i𝑔jn=fMω|fiEfjn𝒫Mω
39 38 a1i iωjωx=i𝑔jn=fMω|fiEfjn𝒫Mω
40 39 rexlimivv iωjωx=i𝑔jn=fMω|fiEfjn𝒫Mω
41 40 exlimiv xiωjωx=i𝑔jn=fMω|fiEfjn𝒫Mω
42 32 41 sylbi ny|xiωjωx=i𝑔jy=fMω|fiEfjn𝒫Mω
43 42 a1i MVEWny|xiωjωx=i𝑔jy=fMω|fiEfjn𝒫Mω
44 26 43 biimtrid MVEWnranxy|iωjωx=i𝑔jy=fMω|fiEfjn𝒫Mω
45 24 44 sylbid MVEWnranMSatEn𝒫Mω
46 21 satfvsuc MVEWbωMSatEsucb=MSatEbxy|uMSatEbvMSatEbx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2ndu
47 46 3expa MVEWbωMSatEsucb=MSatEbxy|uMSatEbvMSatEbx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2ndu
48 47 rneqd MVEWbωranMSatEsucb=ranMSatEbxy|uMSatEbvMSatEbx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2ndu
49 rnun ranMSatEbxy|uMSatEbvMSatEbx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2ndu=ranMSatEbranxy|uMSatEbvMSatEbx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2ndu
50 48 49 eqtrdi MVEWbωranMSatEsucb=ranMSatEbranxy|uMSatEbvMSatEbx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2ndu
51 50 eleq2d MVEWbωnranMSatEsucbnranMSatEbranxy|uMSatEbvMSatEbx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2ndu
52 elun nranMSatEbranxy|uMSatEbvMSatEbx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2ndunranMSatEbnranxy|uMSatEbvMSatEbx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2ndu
53 rnopab ranxy|uMSatEbvMSatEbx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2ndu=y|xuMSatEbvMSatEbx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2ndu
54 53 eleq2i nranxy|uMSatEbvMSatEbx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2nduny|xuMSatEbvMSatEbx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2ndu
55 eqeq1 y=ny=Mω2ndu2ndvn=Mω2ndu2ndv
56 55 anbi2d y=nx=1stu𝑔1stvy=Mω2ndu2ndvx=1stu𝑔1stvn=Mω2ndu2ndv
57 56 rexbidv y=nvMSatEbx=1stu𝑔1stvy=Mω2ndu2ndvvMSatEbx=1stu𝑔1stvn=Mω2ndu2ndv
58 eqeq1 y=ny=aMω|zMizaωi2ndun=aMω|zMizaωi2ndu
59 58 anbi2d y=nx=𝑔i1stuy=aMω|zMizaωi2ndux=𝑔i1stun=aMω|zMizaωi2ndu
60 59 rexbidv y=niωx=𝑔i1stuy=aMω|zMizaωi2nduiωx=𝑔i1stun=aMω|zMizaωi2ndu
61 57 60 orbi12d y=nvMSatEbx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2nduvMSatEbx=1stu𝑔1stvn=Mω2ndu2ndviωx=𝑔i1stun=aMω|zMizaωi2ndu
62 61 rexbidv y=nuMSatEbvMSatEbx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2nduuMSatEbvMSatEbx=1stu𝑔1stvn=Mω2ndu2ndviωx=𝑔i1stun=aMω|zMizaωi2ndu
63 62 exbidv y=nxuMSatEbvMSatEbx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2nduxuMSatEbvMSatEbx=1stu𝑔1stvn=Mω2ndu2ndviωx=𝑔i1stun=aMω|zMizaωi2ndu
64 27 63 elab ny|xuMSatEbvMSatEbx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2nduxuMSatEbvMSatEbx=1stu𝑔1stvn=Mω2ndu2ndviωx=𝑔i1stun=aMω|zMizaωi2ndu
65 54 64 bitri nranxy|uMSatEbvMSatEbx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2nduxuMSatEbvMSatEbx=1stu𝑔1stvn=Mω2ndu2ndviωx=𝑔i1stun=aMω|zMizaωi2ndu
66 65 orbi2i nranMSatEbnranxy|uMSatEbvMSatEbx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2ndunranMSatEbxuMSatEbvMSatEbx=1stu𝑔1stvn=Mω2ndu2ndviωx=𝑔i1stun=aMω|zMizaωi2ndu
67 52 66 bitri nranMSatEbranxy|uMSatEbvMSatEbx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2ndunranMSatEbxuMSatEbvMSatEbx=1stu𝑔1stvn=Mω2ndu2ndviωx=𝑔i1stun=aMω|zMizaωi2ndu
68 51 67 bitrdi MVEWbωnranMSatEsucbnranMSatEbxuMSatEbvMSatEbx=1stu𝑔1stvn=Mω2ndu2ndviωx=𝑔i1stun=aMω|zMizaωi2ndu
69 68 expcom bωMVEWnranMSatEsucbnranMSatEbxuMSatEbvMSatEbx=1stu𝑔1stvn=Mω2ndu2ndviωx=𝑔i1stun=aMω|zMizaωi2ndu
70 69 adantr bωMVEWnranMSatEbn𝒫MωMVEWnranMSatEsucbnranMSatEbxuMSatEbvMSatEbx=1stu𝑔1stvn=Mω2ndu2ndviωx=𝑔i1stun=aMω|zMizaωi2ndu
71 70 imp bωMVEWnranMSatEbn𝒫MωMVEWnranMSatEsucbnranMSatEbxuMSatEbvMSatEbx=1stu𝑔1stvn=Mω2ndu2ndviωx=𝑔i1stun=aMω|zMizaωi2ndu
72 simpr bωMVEWnranMSatEbn𝒫MωMVEWnranMSatEbn𝒫Mω
73 72 imp bωMVEWnranMSatEbn𝒫MωMVEWnranMSatEbn𝒫Mω
74 difss Mω2ndu2ndvMω
75 33 74 elpwi2 Mω2ndu2ndv𝒫Mω
76 eleq1 n=Mω2ndu2ndvn𝒫MωMω2ndu2ndv𝒫Mω
77 75 76 mpbiri n=Mω2ndu2ndvn𝒫Mω
78 77 adantl x=1stu𝑔1stvn=Mω2ndu2ndvn𝒫Mω
79 78 adantl vMSatEbx=1stu𝑔1stvn=Mω2ndu2ndvn𝒫Mω
80 79 rexlimiva vMSatEbx=1stu𝑔1stvn=Mω2ndu2ndvn𝒫Mω
81 ssrab2 aMω|zMizaωi2nduMω
82 33 81 elpwi2 aMω|zMizaωi2ndu𝒫Mω
83 eleq1 n=aMω|zMizaωi2ndun𝒫MωaMω|zMizaωi2ndu𝒫Mω
84 82 83 mpbiri n=aMω|zMizaωi2ndun𝒫Mω
85 84 adantl x=𝑔i1stun=aMω|zMizaωi2ndun𝒫Mω
86 85 a1i iωx=𝑔i1stun=aMω|zMizaωi2ndun𝒫Mω
87 86 rexlimiv iωx=𝑔i1stun=aMω|zMizaωi2ndun𝒫Mω
88 80 87 jaoi vMSatEbx=1stu𝑔1stvn=Mω2ndu2ndviωx=𝑔i1stun=aMω|zMizaωi2ndun𝒫Mω
89 88 a1i uMSatEbvMSatEbx=1stu𝑔1stvn=Mω2ndu2ndviωx=𝑔i1stun=aMω|zMizaωi2ndun𝒫Mω
90 89 rexlimiv uMSatEbvMSatEbx=1stu𝑔1stvn=Mω2ndu2ndviωx=𝑔i1stun=aMω|zMizaωi2ndun𝒫Mω
91 90 exlimiv xuMSatEbvMSatEbx=1stu𝑔1stvn=Mω2ndu2ndviωx=𝑔i1stun=aMω|zMizaωi2ndun𝒫Mω
92 91 a1i bωMVEWnranMSatEbn𝒫MωMVEWxuMSatEbvMSatEbx=1stu𝑔1stvn=Mω2ndu2ndviωx=𝑔i1stun=aMω|zMizaωi2ndun𝒫Mω
93 73 92 jaod bωMVEWnranMSatEbn𝒫MωMVEWnranMSatEbxuMSatEbvMSatEbx=1stu𝑔1stvn=Mω2ndu2ndviωx=𝑔i1stun=aMω|zMizaωi2ndun𝒫Mω
94 71 93 sylbid bωMVEWnranMSatEbn𝒫MωMVEWnranMSatEsucbn𝒫Mω
95 94 exp31 bωMVEWnranMSatEbn𝒫MωMVEWnranMSatEsucbn𝒫Mω
96 5 10 15 20 45 95 finds NωMVEWnranMSatENn𝒫Mω
97 96 com12 MVEWNωnranMSatENn𝒫Mω
98 97 3impia MVEWNωnranMSatENn𝒫Mω
99 98 ssrdv MVEWNωranMSatEN𝒫Mω