| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fveq2 |  | 
						
							| 2 | 1 | rneqd |  | 
						
							| 3 | 2 | eleq2d |  | 
						
							| 4 | 3 | imbi1d |  | 
						
							| 5 | 4 | imbi2d |  | 
						
							| 6 |  | fveq2 |  | 
						
							| 7 | 6 | rneqd |  | 
						
							| 8 | 7 | eleq2d |  | 
						
							| 9 | 8 | imbi1d |  | 
						
							| 10 | 9 | imbi2d |  | 
						
							| 11 |  | fveq2 |  | 
						
							| 12 | 11 | rneqd |  | 
						
							| 13 | 12 | eleq2d |  | 
						
							| 14 | 13 | imbi1d |  | 
						
							| 15 | 14 | imbi2d |  | 
						
							| 16 |  | fveq2 |  | 
						
							| 17 | 16 | rneqd |  | 
						
							| 18 | 17 | eleq2d |  | 
						
							| 19 | 18 | imbi1d |  | 
						
							| 20 | 19 | imbi2d |  | 
						
							| 21 |  | eqid |  | 
						
							| 22 | 21 | satfv0 |  | 
						
							| 23 | 22 | rneqd |  | 
						
							| 24 | 23 | eleq2d |  | 
						
							| 25 |  | rnopab |  | 
						
							| 26 | 25 | eleq2i |  | 
						
							| 27 |  | vex |  | 
						
							| 28 |  | eqeq1 |  | 
						
							| 29 | 28 | anbi2d |  | 
						
							| 30 | 29 | 2rexbidv |  | 
						
							| 31 | 30 | exbidv |  | 
						
							| 32 | 27 31 | elab |  | 
						
							| 33 |  | ovex |  | 
						
							| 34 |  | ssrab2 |  | 
						
							| 35 | 33 34 | elpwi2 |  | 
						
							| 36 |  | eleq1 |  | 
						
							| 37 | 35 36 | mpbiri |  | 
						
							| 38 | 37 | adantl |  | 
						
							| 39 | 38 | a1i |  | 
						
							| 40 | 39 | rexlimivv |  | 
						
							| 41 | 40 | exlimiv |  | 
						
							| 42 | 32 41 | sylbi |  | 
						
							| 43 | 42 | a1i |  | 
						
							| 44 | 26 43 | biimtrid |  | 
						
							| 45 | 24 44 | sylbid |  | 
						
							| 46 | 21 | satfvsuc |  | 
						
							| 47 | 46 | 3expa |  | 
						
							| 48 | 47 | rneqd |  | 
						
							| 49 |  | rnun |  | 
						
							| 50 | 48 49 | eqtrdi |  | 
						
							| 51 | 50 | eleq2d |  | 
						
							| 52 |  | elun |  | 
						
							| 53 |  | rnopab |  | 
						
							| 54 | 53 | eleq2i |  | 
						
							| 55 |  | eqeq1 |  | 
						
							| 56 | 55 | anbi2d |  | 
						
							| 57 | 56 | rexbidv |  | 
						
							| 58 |  | eqeq1 |  | 
						
							| 59 | 58 | anbi2d |  | 
						
							| 60 | 59 | rexbidv |  | 
						
							| 61 | 57 60 | orbi12d |  | 
						
							| 62 | 61 | rexbidv |  | 
						
							| 63 | 62 | exbidv |  | 
						
							| 64 | 27 63 | elab |  | 
						
							| 65 | 54 64 | bitri |  | 
						
							| 66 | 65 | orbi2i |  | 
						
							| 67 | 52 66 | bitri |  | 
						
							| 68 | 51 67 | bitrdi |  | 
						
							| 69 | 68 | expcom |  | 
						
							| 70 | 69 | adantr |  | 
						
							| 71 | 70 | imp |  | 
						
							| 72 |  | simpr |  | 
						
							| 73 | 72 | imp |  | 
						
							| 74 |  | difss |  | 
						
							| 75 | 33 74 | elpwi2 |  | 
						
							| 76 |  | eleq1 |  | 
						
							| 77 | 75 76 | mpbiri |  | 
						
							| 78 | 77 | adantl |  | 
						
							| 79 | 78 | adantl |  | 
						
							| 80 | 79 | rexlimiva |  | 
						
							| 81 |  | ssrab2 |  | 
						
							| 82 | 33 81 | elpwi2 |  | 
						
							| 83 |  | eleq1 |  | 
						
							| 84 | 82 83 | mpbiri |  | 
						
							| 85 | 84 | adantl |  | 
						
							| 86 | 85 | a1i |  | 
						
							| 87 | 86 | rexlimiv |  | 
						
							| 88 | 80 87 | jaoi |  | 
						
							| 89 | 88 | a1i |  | 
						
							| 90 | 89 | rexlimiv |  | 
						
							| 91 | 90 | exlimiv |  | 
						
							| 92 | 91 | a1i |  | 
						
							| 93 | 73 92 | jaod |  | 
						
							| 94 | 71 93 | sylbid |  | 
						
							| 95 | 94 | exp31 |  | 
						
							| 96 | 5 10 15 20 45 95 | finds |  | 
						
							| 97 | 96 | com12 |  | 
						
							| 98 | 97 | 3impia |  | 
						
							| 99 | 98 | ssrdv |  |