| Step |
Hyp |
Ref |
Expression |
| 1 |
|
scmatrhmval.k |
|
| 2 |
|
scmatrhmval.a |
|
| 3 |
|
scmatrhmval.o |
|
| 4 |
|
scmatrhmval.t |
|
| 5 |
|
scmatrhmval.f |
|
| 6 |
|
scmatrhmval.c |
|
| 7 |
1 2 3 4 5 6
|
scmatf |
|
| 8 |
7
|
3adant2 |
|
| 9 |
|
simpr |
|
| 10 |
|
simpl |
|
| 11 |
1 2 3 4 5
|
scmatrhmval |
|
| 12 |
9 10 11
|
syl2an |
|
| 13 |
|
simpr |
|
| 14 |
1 2 3 4 5
|
scmatrhmval |
|
| 15 |
9 13 14
|
syl2an |
|
| 16 |
12 15
|
eqeq12d |
|
| 17 |
16
|
3adantl2 |
|
| 18 |
2
|
matring |
|
| 19 |
|
eqid |
|
| 20 |
19 3
|
ringidcl |
|
| 21 |
18 20
|
syl |
|
| 22 |
21 10
|
anim12ci |
|
| 23 |
1 2 19 4
|
matvscl |
|
| 24 |
22 23
|
syldan |
|
| 25 |
21 13
|
anim12ci |
|
| 26 |
1 2 19 4
|
matvscl |
|
| 27 |
25 26
|
syldan |
|
| 28 |
24 27
|
jca |
|
| 29 |
28
|
3adantl2 |
|
| 30 |
2 19
|
eqmat |
|
| 31 |
29 30
|
syl |
|
| 32 |
|
difsnid |
|
| 33 |
32
|
eqcomd |
|
| 34 |
33
|
adantl |
|
| 35 |
34
|
raleqdv |
|
| 36 |
|
oveq2 |
|
| 37 |
|
oveq2 |
|
| 38 |
36 37
|
eqeq12d |
|
| 39 |
38
|
ralunsn |
|
| 40 |
39
|
adantl |
|
| 41 |
10
|
anim2i |
|
| 42 |
|
df-3an |
|
| 43 |
41 42
|
sylibr |
|
| 44 |
|
id |
|
| 45 |
44 44
|
jca |
|
| 46 |
|
eqid |
|
| 47 |
2 1 46 3 4
|
scmatscmide |
|
| 48 |
43 45 47
|
syl2an |
|
| 49 |
|
eqid |
|
| 50 |
49
|
iftruei |
|
| 51 |
48 50
|
eqtrdi |
|
| 52 |
13
|
anim2i |
|
| 53 |
|
df-3an |
|
| 54 |
52 53
|
sylibr |
|
| 55 |
2 1 46 3 4
|
scmatscmide |
|
| 56 |
54 45 55
|
syl2an |
|
| 57 |
49
|
iftruei |
|
| 58 |
56 57
|
eqtrdi |
|
| 59 |
51 58
|
eqeq12d |
|
| 60 |
59
|
anbi2d |
|
| 61 |
35 40 60
|
3bitrd |
|
| 62 |
61
|
ralbidva |
|
| 63 |
62
|
3adantl2 |
|
| 64 |
|
r19.26 |
|
| 65 |
|
rspn0 |
|
| 66 |
65
|
3ad2ant2 |
|
| 67 |
66
|
adantr |
|
| 68 |
67
|
com12 |
|
| 69 |
64 68
|
simplbiim |
|
| 70 |
69
|
com12 |
|
| 71 |
63 70
|
sylbid |
|
| 72 |
31 71
|
sylbid |
|
| 73 |
17 72
|
sylbid |
|
| 74 |
73
|
ralrimivva |
|
| 75 |
|
dff13 |
|
| 76 |
8 74 75
|
sylanbrc |
|