Metamath Proof Explorer


Theorem scmatf1

Description: There is a 1-1 function from a ring to any ring of scalar matrices with positive dimension over this ring. (Contributed by AV, 25-Dec-2019)

Ref Expression
Hypotheses scmatrhmval.k K=BaseR
scmatrhmval.a A=NMatR
scmatrhmval.o 1˙=1A
scmatrhmval.t ˙=A
scmatrhmval.f F=xKx˙1˙
scmatrhmval.c C=NScMatR
Assertion scmatf1 NFinNRRingF:K1-1C

Proof

Step Hyp Ref Expression
1 scmatrhmval.k K=BaseR
2 scmatrhmval.a A=NMatR
3 scmatrhmval.o 1˙=1A
4 scmatrhmval.t ˙=A
5 scmatrhmval.f F=xKx˙1˙
6 scmatrhmval.c C=NScMatR
7 1 2 3 4 5 6 scmatf NFinRRingF:KC
8 7 3adant2 NFinNRRingF:KC
9 simpr NFinRRingRRing
10 simpl yKzKyK
11 1 2 3 4 5 scmatrhmval RRingyKFy=y˙1˙
12 9 10 11 syl2an NFinRRingyKzKFy=y˙1˙
13 simpr yKzKzK
14 1 2 3 4 5 scmatrhmval RRingzKFz=z˙1˙
15 9 13 14 syl2an NFinRRingyKzKFz=z˙1˙
16 12 15 eqeq12d NFinRRingyKzKFy=Fzy˙1˙=z˙1˙
17 16 3adantl2 NFinNRRingyKzKFy=Fzy˙1˙=z˙1˙
18 2 matring NFinRRingARing
19 eqid BaseA=BaseA
20 19 3 ringidcl ARing1˙BaseA
21 18 20 syl NFinRRing1˙BaseA
22 21 10 anim12ci NFinRRingyKzKyK1˙BaseA
23 1 2 19 4 matvscl NFinRRingyK1˙BaseAy˙1˙BaseA
24 22 23 syldan NFinRRingyKzKy˙1˙BaseA
25 21 13 anim12ci NFinRRingyKzKzK1˙BaseA
26 1 2 19 4 matvscl NFinRRingzK1˙BaseAz˙1˙BaseA
27 25 26 syldan NFinRRingyKzKz˙1˙BaseA
28 24 27 jca NFinRRingyKzKy˙1˙BaseAz˙1˙BaseA
29 28 3adantl2 NFinNRRingyKzKy˙1˙BaseAz˙1˙BaseA
30 2 19 eqmat y˙1˙BaseAz˙1˙BaseAy˙1˙=z˙1˙iNjNiy˙1˙j=iz˙1˙j
31 29 30 syl NFinNRRingyKzKy˙1˙=z˙1˙iNjNiy˙1˙j=iz˙1˙j
32 difsnid iNNii=N
33 32 eqcomd iNN=Nii
34 33 adantl NFinRRingyKzKiNN=Nii
35 34 raleqdv NFinRRingyKzKiNjNiy˙1˙j=iz˙1˙jjNiiiy˙1˙j=iz˙1˙j
36 oveq2 j=iiy˙1˙j=iy˙1˙i
37 oveq2 j=iiz˙1˙j=iz˙1˙i
38 36 37 eqeq12d j=iiy˙1˙j=iz˙1˙jiy˙1˙i=iz˙1˙i
39 38 ralunsn iNjNiiiy˙1˙j=iz˙1˙jjNiiy˙1˙j=iz˙1˙jiy˙1˙i=iz˙1˙i
40 39 adantl NFinRRingyKzKiNjNiiiy˙1˙j=iz˙1˙jjNiiy˙1˙j=iz˙1˙jiy˙1˙i=iz˙1˙i
41 10 anim2i NFinRRingyKzKNFinRRingyK
42 df-3an NFinRRingyKNFinRRingyK
43 41 42 sylibr NFinRRingyKzKNFinRRingyK
44 id iNiN
45 44 44 jca iNiNiN
46 eqid 0R=0R
47 2 1 46 3 4 scmatscmide NFinRRingyKiNiNiy˙1˙i=ifi=iy0R
48 43 45 47 syl2an NFinRRingyKzKiNiy˙1˙i=ifi=iy0R
49 eqid i=i
50 49 iftruei ifi=iy0R=y
51 48 50 eqtrdi NFinRRingyKzKiNiy˙1˙i=y
52 13 anim2i NFinRRingyKzKNFinRRingzK
53 df-3an NFinRRingzKNFinRRingzK
54 52 53 sylibr NFinRRingyKzKNFinRRingzK
55 2 1 46 3 4 scmatscmide NFinRRingzKiNiNiz˙1˙i=ifi=iz0R
56 54 45 55 syl2an NFinRRingyKzKiNiz˙1˙i=ifi=iz0R
57 49 iftruei ifi=iz0R=z
58 56 57 eqtrdi NFinRRingyKzKiNiz˙1˙i=z
59 51 58 eqeq12d NFinRRingyKzKiNiy˙1˙i=iz˙1˙iy=z
60 59 anbi2d NFinRRingyKzKiNjNiiy˙1˙j=iz˙1˙jiy˙1˙i=iz˙1˙ijNiiy˙1˙j=iz˙1˙jy=z
61 35 40 60 3bitrd NFinRRingyKzKiNjNiy˙1˙j=iz˙1˙jjNiiy˙1˙j=iz˙1˙jy=z
62 61 ralbidva NFinRRingyKzKiNjNiy˙1˙j=iz˙1˙jiNjNiiy˙1˙j=iz˙1˙jy=z
63 62 3adantl2 NFinNRRingyKzKiNjNiy˙1˙j=iz˙1˙jiNjNiiy˙1˙j=iz˙1˙jy=z
64 r19.26 iNjNiiy˙1˙j=iz˙1˙jy=ziNjNiiy˙1˙j=iz˙1˙jiNy=z
65 rspn0 NiNy=zy=z
66 65 3ad2ant2 NFinNRRingiNy=zy=z
67 66 adantr NFinNRRingyKzKiNy=zy=z
68 67 com12 iNy=zNFinNRRingyKzKy=z
69 64 68 simplbiim iNjNiiy˙1˙j=iz˙1˙jy=zNFinNRRingyKzKy=z
70 69 com12 NFinNRRingyKzKiNjNiiy˙1˙j=iz˙1˙jy=zy=z
71 63 70 sylbid NFinNRRingyKzKiNjNiy˙1˙j=iz˙1˙jy=z
72 31 71 sylbid NFinNRRingyKzKy˙1˙=z˙1˙y=z
73 17 72 sylbid NFinNRRingyKzKFy=Fzy=z
74 73 ralrimivva NFinNRRingyKzKFy=Fzy=z
75 dff13 F:K1-1CF:KCyKzKFy=Fzy=z
76 8 74 75 sylanbrc NFinNRRingF:K1-1C