| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sconnpi1.1 |  | 
						
							| 2 |  | sconntop |  | 
						
							| 3 | 2 | adantl |  | 
						
							| 4 |  | simpl |  | 
						
							| 5 |  | eqid |  | 
						
							| 6 |  | eqid |  | 
						
							| 7 |  | simpl |  | 
						
							| 8 | 1 | toptopon |  | 
						
							| 9 | 7 8 | sylib |  | 
						
							| 10 |  | simpr |  | 
						
							| 11 | 5 6 9 10 | elpi1 |  | 
						
							| 12 | 3 4 11 | syl2anc |  | 
						
							| 13 |  | phtpcer |  | 
						
							| 14 | 13 | a1i |  | 
						
							| 15 |  | simpllr |  | 
						
							| 16 |  | simplr |  | 
						
							| 17 |  | simprl |  | 
						
							| 18 |  | simprr |  | 
						
							| 19 | 17 18 | eqtr4d |  | 
						
							| 20 |  | sconnpht |  | 
						
							| 21 | 15 16 19 20 | syl3anc |  | 
						
							| 22 | 17 | sneqd |  | 
						
							| 23 | 22 | xpeq2d |  | 
						
							| 24 | 21 23 | breqtrd |  | 
						
							| 25 | 14 24 | erthi |  | 
						
							| 26 | 3 8 | sylib |  | 
						
							| 27 |  | eqid |  | 
						
							| 28 | 5 27 | pi1id |  | 
						
							| 29 | 26 4 28 | syl2anc |  | 
						
							| 30 | 29 | ad2antrr |  | 
						
							| 31 | 25 30 | eqtrd |  | 
						
							| 32 |  | velsn |  | 
						
							| 33 |  | eqeq1 |  | 
						
							| 34 | 32 33 | bitrid |  | 
						
							| 35 | 31 34 | syl5ibrcom |  | 
						
							| 36 | 35 | expimpd |  | 
						
							| 37 | 36 | rexlimdva |  | 
						
							| 38 | 12 37 | sylbid |  | 
						
							| 39 | 38 | ssrdv |  | 
						
							| 40 | 5 | pi1grp |  | 
						
							| 41 | 26 4 40 | syl2anc |  | 
						
							| 42 |  | eqid |  | 
						
							| 43 | 6 42 | grpidcl |  | 
						
							| 44 | 41 43 | syl |  | 
						
							| 45 | 44 | snssd |  | 
						
							| 46 | 39 45 | eqssd |  | 
						
							| 47 |  | fvex |  | 
						
							| 48 | 47 | ensn1 |  | 
						
							| 49 | 46 48 | eqbrtrdi |  | 
						
							| 50 | 49 | adantll |  | 
						
							| 51 |  | simpll |  | 
						
							| 52 |  | eqid |  | 
						
							| 53 |  | eqid |  | 
						
							| 54 |  | simplll |  | 
						
							| 55 |  | pconntop |  | 
						
							| 56 | 54 55 | syl |  | 
						
							| 57 | 56 8 | sylib |  | 
						
							| 58 |  | simprl |  | 
						
							| 59 |  | iiuni |  | 
						
							| 60 | 59 1 | cnf |  | 
						
							| 61 | 58 60 | syl |  | 
						
							| 62 |  | 0elunit |  | 
						
							| 63 |  | ffvelcdm |  | 
						
							| 64 | 61 62 63 | sylancl |  | 
						
							| 65 |  | eqidd |  | 
						
							| 66 |  | simprr |  | 
						
							| 67 | 66 | eqcomd |  | 
						
							| 68 | 52 53 57 64 58 65 67 | elpi1i |  | 
						
							| 69 |  | eqid |  | 
						
							| 70 | 69 | pcoptcl |  | 
						
							| 71 | 57 64 70 | syl2anc |  | 
						
							| 72 | 71 | simp1d |  | 
						
							| 73 | 71 | simp2d |  | 
						
							| 74 | 71 | simp3d |  | 
						
							| 75 | 52 53 57 64 72 73 74 | elpi1i |  | 
						
							| 76 |  | simpllr |  | 
						
							| 77 | 1 52 5 53 6 | pconnpi1 |  | 
						
							| 78 | 54 64 76 77 | syl3anc |  | 
						
							| 79 | 53 6 | gicen |  | 
						
							| 80 | 78 79 | syl |  | 
						
							| 81 |  | simplr |  | 
						
							| 82 |  | entr |  | 
						
							| 83 | 80 81 82 | syl2anc |  | 
						
							| 84 |  | en1eqsn |  | 
						
							| 85 | 75 83 84 | syl2anc |  | 
						
							| 86 | 68 85 | eleqtrd |  | 
						
							| 87 |  | elsni |  | 
						
							| 88 | 86 87 | syl |  | 
						
							| 89 | 13 | a1i |  | 
						
							| 90 | 89 58 | erth |  | 
						
							| 91 | 88 90 | mpbird |  | 
						
							| 92 | 91 | expr |  | 
						
							| 93 | 92 | ralrimiva |  | 
						
							| 94 |  | issconn |  | 
						
							| 95 | 51 93 94 | sylanbrc |  | 
						
							| 96 | 50 95 | impbida |  |