Database
SURREAL NUMBERS
Conway cut representation
Conway cuts
scutun12
Next ⟩
dmscut
Metamath Proof Explorer
Ascii
Unicode
Theorem
scutun12
Description:
Union law for surreal cuts.
(Contributed by
Scott Fenton
, 9-Dec-2021)
Ref
Expression
Assertion
scutun12
⊢
A
≪
s
B
∧
C
≪
s
A
|
s
B
∧
A
|
s
B
≪
s
D
→
A
∪
C
|
s
B
∪
D
=
A
|
s
B
Proof
Step
Hyp
Ref
Expression
1
simp1
⊢
A
≪
s
B
∧
C
≪
s
A
|
s
B
∧
A
|
s
B
≪
s
D
→
A
≪
s
B
2
scutcut
⊢
A
≪
s
B
→
A
|
s
B
∈
No
∧
A
≪
s
A
|
s
B
∧
A
|
s
B
≪
s
B
3
1
2
syl
⊢
A
≪
s
B
∧
C
≪
s
A
|
s
B
∧
A
|
s
B
≪
s
D
→
A
|
s
B
∈
No
∧
A
≪
s
A
|
s
B
∧
A
|
s
B
≪
s
B
4
3
simp2d
⊢
A
≪
s
B
∧
C
≪
s
A
|
s
B
∧
A
|
s
B
≪
s
D
→
A
≪
s
A
|
s
B
5
simp2
⊢
A
≪
s
B
∧
C
≪
s
A
|
s
B
∧
A
|
s
B
≪
s
D
→
C
≪
s
A
|
s
B
6
ssltun1
⊢
A
≪
s
A
|
s
B
∧
C
≪
s
A
|
s
B
→
A
∪
C
≪
s
A
|
s
B
7
4
5
6
syl2anc
⊢
A
≪
s
B
∧
C
≪
s
A
|
s
B
∧
A
|
s
B
≪
s
D
→
A
∪
C
≪
s
A
|
s
B
8
3
simp3d
⊢
A
≪
s
B
∧
C
≪
s
A
|
s
B
∧
A
|
s
B
≪
s
D
→
A
|
s
B
≪
s
B
9
simp3
⊢
A
≪
s
B
∧
C
≪
s
A
|
s
B
∧
A
|
s
B
≪
s
D
→
A
|
s
B
≪
s
D
10
ssltun2
⊢
A
|
s
B
≪
s
B
∧
A
|
s
B
≪
s
D
→
A
|
s
B
≪
s
B
∪
D
11
8
9
10
syl2anc
⊢
A
≪
s
B
∧
C
≪
s
A
|
s
B
∧
A
|
s
B
≪
s
D
→
A
|
s
B
≪
s
B
∪
D
12
ovex
⊢
A
|
s
B
∈
V
13
12
snnz
⊢
A
|
s
B
≠
∅
14
sslttr
⊢
A
∪
C
≪
s
A
|
s
B
∧
A
|
s
B
≪
s
B
∪
D
∧
A
|
s
B
≠
∅
→
A
∪
C
≪
s
B
∪
D
15
13
14
mp3an3
⊢
A
∪
C
≪
s
A
|
s
B
∧
A
|
s
B
≪
s
B
∪
D
→
A
∪
C
≪
s
B
∪
D
16
7
11
15
syl2anc
⊢
A
≪
s
B
∧
C
≪
s
A
|
s
B
∧
A
|
s
B
≪
s
D
→
A
∪
C
≪
s
B
∪
D
17
scutval
ι
⊢
A
∪
C
≪
s
B
∪
D
→
A
∪
C
|
s
B
∪
D
=
ι
x
∈
y
∈
No
|
A
∪
C
≪
s
y
∧
y
≪
s
B
∪
D
|
bday
x
=
⋂
bday
y
∈
No
|
A
∪
C
≪
s
y
∧
y
≪
s
B
∪
D
18
16
17
syl
ι
⊢
A
≪
s
B
∧
C
≪
s
A
|
s
B
∧
A
|
s
B
≪
s
D
→
A
∪
C
|
s
B
∪
D
=
ι
x
∈
y
∈
No
|
A
∪
C
≪
s
y
∧
y
≪
s
B
∪
D
|
bday
x
=
⋂
bday
y
∈
No
|
A
∪
C
≪
s
y
∧
y
≪
s
B
∪
D
19
vex
⊢
x
∈
V
20
19
elima
⊢
x
∈
bday
y
∈
No
|
A
∪
C
≪
s
y
∧
y
≪
s
B
∪
D
↔
∃
z
∈
y
∈
No
|
A
∪
C
≪
s
y
∧
y
≪
s
B
∪
D
z
bday
x
21
sneq
⊢
y
=
z
→
y
=
z
22
21
breq2d
⊢
y
=
z
→
A
∪
C
≪
s
y
↔
A
∪
C
≪
s
z
23
21
breq1d
⊢
y
=
z
→
y
≪
s
B
∪
D
↔
z
≪
s
B
∪
D
24
22
23
anbi12d
⊢
y
=
z
→
A
∪
C
≪
s
y
∧
y
≪
s
B
∪
D
↔
A
∪
C
≪
s
z
∧
z
≪
s
B
∪
D
25
24
rexrab
⊢
∃
z
∈
y
∈
No
|
A
∪
C
≪
s
y
∧
y
≪
s
B
∪
D
z
bday
x
↔
∃
z
∈
No
A
∪
C
≪
s
z
∧
z
≪
s
B
∪
D
∧
z
bday
x
26
20
25
bitri
⊢
x
∈
bday
y
∈
No
|
A
∪
C
≪
s
y
∧
y
≪
s
B
∪
D
↔
∃
z
∈
No
A
∪
C
≪
s
z
∧
z
≪
s
B
∪
D
∧
z
bday
x
27
simplr
⊢
A
≪
s
B
∧
C
≪
s
A
|
s
B
∧
A
|
s
B
≪
s
D
∧
z
∈
No
∧
A
∪
C
≪
s
z
∧
z
≪
s
B
∪
D
→
z
∈
No
28
bdayfn
⊢
bday
Fn
No
29
fnbrfvb
⊢
bday
Fn
No
∧
z
∈
No
→
bday
z
=
x
↔
z
bday
x
30
28
29
mpan
⊢
z
∈
No
→
bday
z
=
x
↔
z
bday
x
31
27
30
syl
⊢
A
≪
s
B
∧
C
≪
s
A
|
s
B
∧
A
|
s
B
≪
s
D
∧
z
∈
No
∧
A
∪
C
≪
s
z
∧
z
≪
s
B
∪
D
→
bday
z
=
x
↔
z
bday
x
32
simpll1
⊢
A
≪
s
B
∧
C
≪
s
A
|
s
B
∧
A
|
s
B
≪
s
D
∧
z
∈
No
∧
A
∪
C
≪
s
z
∧
z
≪
s
B
∪
D
→
A
≪
s
B
33
scutbday
⊢
A
≪
s
B
→
bday
A
|
s
B
=
⋂
bday
y
∈
No
|
A
≪
s
y
∧
y
≪
s
B
34
32
33
syl
⊢
A
≪
s
B
∧
C
≪
s
A
|
s
B
∧
A
|
s
B
≪
s
D
∧
z
∈
No
∧
A
∪
C
≪
s
z
∧
z
≪
s
B
∪
D
→
bday
A
|
s
B
=
⋂
bday
y
∈
No
|
A
≪
s
y
∧
y
≪
s
B
35
simprl
⊢
A
≪
s
B
∧
C
≪
s
A
|
s
B
∧
A
|
s
B
≪
s
D
∧
z
∈
No
∧
A
∪
C
≪
s
z
∧
z
≪
s
B
∪
D
→
A
∪
C
≪
s
z
36
ssun1
⊢
A
⊆
A
∪
C
37
sssslt1
⊢
A
∪
C
≪
s
z
∧
A
⊆
A
∪
C
→
A
≪
s
z
38
36
37
mpan2
⊢
A
∪
C
≪
s
z
→
A
≪
s
z
39
35
38
syl
⊢
A
≪
s
B
∧
C
≪
s
A
|
s
B
∧
A
|
s
B
≪
s
D
∧
z
∈
No
∧
A
∪
C
≪
s
z
∧
z
≪
s
B
∪
D
→
A
≪
s
z
40
simprr
⊢
A
≪
s
B
∧
C
≪
s
A
|
s
B
∧
A
|
s
B
≪
s
D
∧
z
∈
No
∧
A
∪
C
≪
s
z
∧
z
≪
s
B
∪
D
→
z
≪
s
B
∪
D
41
ssun1
⊢
B
⊆
B
∪
D
42
sssslt2
⊢
z
≪
s
B
∪
D
∧
B
⊆
B
∪
D
→
z
≪
s
B
43
41
42
mpan2
⊢
z
≪
s
B
∪
D
→
z
≪
s
B
44
40
43
syl
⊢
A
≪
s
B
∧
C
≪
s
A
|
s
B
∧
A
|
s
B
≪
s
D
∧
z
∈
No
∧
A
∪
C
≪
s
z
∧
z
≪
s
B
∪
D
→
z
≪
s
B
45
39
44
jca
⊢
A
≪
s
B
∧
C
≪
s
A
|
s
B
∧
A
|
s
B
≪
s
D
∧
z
∈
No
∧
A
∪
C
≪
s
z
∧
z
≪
s
B
∪
D
→
A
≪
s
z
∧
z
≪
s
B
46
21
breq2d
⊢
y
=
z
→
A
≪
s
y
↔
A
≪
s
z
47
21
breq1d
⊢
y
=
z
→
y
≪
s
B
↔
z
≪
s
B
48
46
47
anbi12d
⊢
y
=
z
→
A
≪
s
y
∧
y
≪
s
B
↔
A
≪
s
z
∧
z
≪
s
B
49
48
elrab
⊢
z
∈
y
∈
No
|
A
≪
s
y
∧
y
≪
s
B
↔
z
∈
No
∧
A
≪
s
z
∧
z
≪
s
B
50
27
45
49
sylanbrc
⊢
A
≪
s
B
∧
C
≪
s
A
|
s
B
∧
A
|
s
B
≪
s
D
∧
z
∈
No
∧
A
∪
C
≪
s
z
∧
z
≪
s
B
∪
D
→
z
∈
y
∈
No
|
A
≪
s
y
∧
y
≪
s
B
51
ssrab2
⊢
y
∈
No
|
A
≪
s
y
∧
y
≪
s
B
⊆
No
52
fnfvima
⊢
bday
Fn
No
∧
y
∈
No
|
A
≪
s
y
∧
y
≪
s
B
⊆
No
∧
z
∈
y
∈
No
|
A
≪
s
y
∧
y
≪
s
B
→
bday
z
∈
bday
y
∈
No
|
A
≪
s
y
∧
y
≪
s
B
53
28
51
52
mp3an12
⊢
z
∈
y
∈
No
|
A
≪
s
y
∧
y
≪
s
B
→
bday
z
∈
bday
y
∈
No
|
A
≪
s
y
∧
y
≪
s
B
54
50
53
syl
⊢
A
≪
s
B
∧
C
≪
s
A
|
s
B
∧
A
|
s
B
≪
s
D
∧
z
∈
No
∧
A
∪
C
≪
s
z
∧
z
≪
s
B
∪
D
→
bday
z
∈
bday
y
∈
No
|
A
≪
s
y
∧
y
≪
s
B
55
intss1
⊢
bday
z
∈
bday
y
∈
No
|
A
≪
s
y
∧
y
≪
s
B
→
⋂
bday
y
∈
No
|
A
≪
s
y
∧
y
≪
s
B
⊆
bday
z
56
54
55
syl
⊢
A
≪
s
B
∧
C
≪
s
A
|
s
B
∧
A
|
s
B
≪
s
D
∧
z
∈
No
∧
A
∪
C
≪
s
z
∧
z
≪
s
B
∪
D
→
⋂
bday
y
∈
No
|
A
≪
s
y
∧
y
≪
s
B
⊆
bday
z
57
34
56
eqsstrd
⊢
A
≪
s
B
∧
C
≪
s
A
|
s
B
∧
A
|
s
B
≪
s
D
∧
z
∈
No
∧
A
∪
C
≪
s
z
∧
z
≪
s
B
∪
D
→
bday
A
|
s
B
⊆
bday
z
58
sseq2
⊢
bday
z
=
x
→
bday
A
|
s
B
⊆
bday
z
↔
bday
A
|
s
B
⊆
x
59
58
biimpd
⊢
bday
z
=
x
→
bday
A
|
s
B
⊆
bday
z
→
bday
A
|
s
B
⊆
x
60
59
com12
⊢
bday
A
|
s
B
⊆
bday
z
→
bday
z
=
x
→
bday
A
|
s
B
⊆
x
61
57
60
syl
⊢
A
≪
s
B
∧
C
≪
s
A
|
s
B
∧
A
|
s
B
≪
s
D
∧
z
∈
No
∧
A
∪
C
≪
s
z
∧
z
≪
s
B
∪
D
→
bday
z
=
x
→
bday
A
|
s
B
⊆
x
62
31
61
sylbird
⊢
A
≪
s
B
∧
C
≪
s
A
|
s
B
∧
A
|
s
B
≪
s
D
∧
z
∈
No
∧
A
∪
C
≪
s
z
∧
z
≪
s
B
∪
D
→
z
bday
x
→
bday
A
|
s
B
⊆
x
63
62
ex
⊢
A
≪
s
B
∧
C
≪
s
A
|
s
B
∧
A
|
s
B
≪
s
D
∧
z
∈
No
→
A
∪
C
≪
s
z
∧
z
≪
s
B
∪
D
→
z
bday
x
→
bday
A
|
s
B
⊆
x
64
63
impd
⊢
A
≪
s
B
∧
C
≪
s
A
|
s
B
∧
A
|
s
B
≪
s
D
∧
z
∈
No
→
A
∪
C
≪
s
z
∧
z
≪
s
B
∪
D
∧
z
bday
x
→
bday
A
|
s
B
⊆
x
65
64
rexlimdva
⊢
A
≪
s
B
∧
C
≪
s
A
|
s
B
∧
A
|
s
B
≪
s
D
→
∃
z
∈
No
A
∪
C
≪
s
z
∧
z
≪
s
B
∪
D
∧
z
bday
x
→
bday
A
|
s
B
⊆
x
66
26
65
biimtrid
⊢
A
≪
s
B
∧
C
≪
s
A
|
s
B
∧
A
|
s
B
≪
s
D
→
x
∈
bday
y
∈
No
|
A
∪
C
≪
s
y
∧
y
≪
s
B
∪
D
→
bday
A
|
s
B
⊆
x
67
66
ralrimiv
⊢
A
≪
s
B
∧
C
≪
s
A
|
s
B
∧
A
|
s
B
≪
s
D
→
∀
x
∈
bday
y
∈
No
|
A
∪
C
≪
s
y
∧
y
≪
s
B
∪
D
bday
A
|
s
B
⊆
x
68
ssint
⊢
bday
A
|
s
B
⊆
⋂
bday
y
∈
No
|
A
∪
C
≪
s
y
∧
y
≪
s
B
∪
D
↔
∀
x
∈
bday
y
∈
No
|
A
∪
C
≪
s
y
∧
y
≪
s
B
∪
D
bday
A
|
s
B
⊆
x
69
67
68
sylibr
⊢
A
≪
s
B
∧
C
≪
s
A
|
s
B
∧
A
|
s
B
≪
s
D
→
bday
A
|
s
B
⊆
⋂
bday
y
∈
No
|
A
∪
C
≪
s
y
∧
y
≪
s
B
∪
D
70
3
simp1d
⊢
A
≪
s
B
∧
C
≪
s
A
|
s
B
∧
A
|
s
B
≪
s
D
→
A
|
s
B
∈
No
71
7
11
jca
⊢
A
≪
s
B
∧
C
≪
s
A
|
s
B
∧
A
|
s
B
≪
s
D
→
A
∪
C
≪
s
A
|
s
B
∧
A
|
s
B
≪
s
B
∪
D
72
sneq
⊢
y
=
A
|
s
B
→
y
=
A
|
s
B
73
72
breq2d
⊢
y
=
A
|
s
B
→
A
∪
C
≪
s
y
↔
A
∪
C
≪
s
A
|
s
B
74
72
breq1d
⊢
y
=
A
|
s
B
→
y
≪
s
B
∪
D
↔
A
|
s
B
≪
s
B
∪
D
75
73
74
anbi12d
⊢
y
=
A
|
s
B
→
A
∪
C
≪
s
y
∧
y
≪
s
B
∪
D
↔
A
∪
C
≪
s
A
|
s
B
∧
A
|
s
B
≪
s
B
∪
D
76
75
elrab
⊢
A
|
s
B
∈
y
∈
No
|
A
∪
C
≪
s
y
∧
y
≪
s
B
∪
D
↔
A
|
s
B
∈
No
∧
A
∪
C
≪
s
A
|
s
B
∧
A
|
s
B
≪
s
B
∪
D
77
70
71
76
sylanbrc
⊢
A
≪
s
B
∧
C
≪
s
A
|
s
B
∧
A
|
s
B
≪
s
D
→
A
|
s
B
∈
y
∈
No
|
A
∪
C
≪
s
y
∧
y
≪
s
B
∪
D
78
ssrab2
⊢
y
∈
No
|
A
∪
C
≪
s
y
∧
y
≪
s
B
∪
D
⊆
No
79
fnfvima
⊢
bday
Fn
No
∧
y
∈
No
|
A
∪
C
≪
s
y
∧
y
≪
s
B
∪
D
⊆
No
∧
A
|
s
B
∈
y
∈
No
|
A
∪
C
≪
s
y
∧
y
≪
s
B
∪
D
→
bday
A
|
s
B
∈
bday
y
∈
No
|
A
∪
C
≪
s
y
∧
y
≪
s
B
∪
D
80
28
78
79
mp3an12
⊢
A
|
s
B
∈
y
∈
No
|
A
∪
C
≪
s
y
∧
y
≪
s
B
∪
D
→
bday
A
|
s
B
∈
bday
y
∈
No
|
A
∪
C
≪
s
y
∧
y
≪
s
B
∪
D
81
77
80
syl
⊢
A
≪
s
B
∧
C
≪
s
A
|
s
B
∧
A
|
s
B
≪
s
D
→
bday
A
|
s
B
∈
bday
y
∈
No
|
A
∪
C
≪
s
y
∧
y
≪
s
B
∪
D
82
intss1
⊢
bday
A
|
s
B
∈
bday
y
∈
No
|
A
∪
C
≪
s
y
∧
y
≪
s
B
∪
D
→
⋂
bday
y
∈
No
|
A
∪
C
≪
s
y
∧
y
≪
s
B
∪
D
⊆
bday
A
|
s
B
83
81
82
syl
⊢
A
≪
s
B
∧
C
≪
s
A
|
s
B
∧
A
|
s
B
≪
s
D
→
⋂
bday
y
∈
No
|
A
∪
C
≪
s
y
∧
y
≪
s
B
∪
D
⊆
bday
A
|
s
B
84
69
83
eqssd
⊢
A
≪
s
B
∧
C
≪
s
A
|
s
B
∧
A
|
s
B
≪
s
D
→
bday
A
|
s
B
=
⋂
bday
y
∈
No
|
A
∪
C
≪
s
y
∧
y
≪
s
B
∪
D
85
conway
⊢
A
∪
C
≪
s
B
∪
D
→
∃!
x
∈
y
∈
No
|
A
∪
C
≪
s
y
∧
y
≪
s
B
∪
D
bday
x
=
⋂
bday
y
∈
No
|
A
∪
C
≪
s
y
∧
y
≪
s
B
∪
D
86
16
85
syl
⊢
A
≪
s
B
∧
C
≪
s
A
|
s
B
∧
A
|
s
B
≪
s
D
→
∃!
x
∈
y
∈
No
|
A
∪
C
≪
s
y
∧
y
≪
s
B
∪
D
bday
x
=
⋂
bday
y
∈
No
|
A
∪
C
≪
s
y
∧
y
≪
s
B
∪
D
87
fveqeq2
⊢
x
=
A
|
s
B
→
bday
x
=
⋂
bday
y
∈
No
|
A
∪
C
≪
s
y
∧
y
≪
s
B
∪
D
↔
bday
A
|
s
B
=
⋂
bday
y
∈
No
|
A
∪
C
≪
s
y
∧
y
≪
s
B
∪
D
88
87
riota2
ι
⊢
A
|
s
B
∈
y
∈
No
|
A
∪
C
≪
s
y
∧
y
≪
s
B
∪
D
∧
∃!
x
∈
y
∈
No
|
A
∪
C
≪
s
y
∧
y
≪
s
B
∪
D
bday
x
=
⋂
bday
y
∈
No
|
A
∪
C
≪
s
y
∧
y
≪
s
B
∪
D
→
bday
A
|
s
B
=
⋂
bday
y
∈
No
|
A
∪
C
≪
s
y
∧
y
≪
s
B
∪
D
↔
ι
x
∈
y
∈
No
|
A
∪
C
≪
s
y
∧
y
≪
s
B
∪
D
|
bday
x
=
⋂
bday
y
∈
No
|
A
∪
C
≪
s
y
∧
y
≪
s
B
∪
D
=
A
|
s
B
89
77
86
88
syl2anc
ι
⊢
A
≪
s
B
∧
C
≪
s
A
|
s
B
∧
A
|
s
B
≪
s
D
→
bday
A
|
s
B
=
⋂
bday
y
∈
No
|
A
∪
C
≪
s
y
∧
y
≪
s
B
∪
D
↔
ι
x
∈
y
∈
No
|
A
∪
C
≪
s
y
∧
y
≪
s
B
∪
D
|
bday
x
=
⋂
bday
y
∈
No
|
A
∪
C
≪
s
y
∧
y
≪
s
B
∪
D
=
A
|
s
B
90
84
89
mpbid
ι
⊢
A
≪
s
B
∧
C
≪
s
A
|
s
B
∧
A
|
s
B
≪
s
D
→
ι
x
∈
y
∈
No
|
A
∪
C
≪
s
y
∧
y
≪
s
B
∪
D
|
bday
x
=
⋂
bday
y
∈
No
|
A
∪
C
≪
s
y
∧
y
≪
s
B
∪
D
=
A
|
s
B
91
90
eqcomd
ι
⊢
A
≪
s
B
∧
C
≪
s
A
|
s
B
∧
A
|
s
B
≪
s
D
→
A
|
s
B
=
ι
x
∈
y
∈
No
|
A
∪
C
≪
s
y
∧
y
≪
s
B
∪
D
|
bday
x
=
⋂
bday
y
∈
No
|
A
∪
C
≪
s
y
∧
y
≪
s
B
∪
D
92
18
91
eqtr4d
⊢
A
≪
s
B
∧
C
≪
s
A
|
s
B
∧
A
|
s
B
≪
s
D
→
A
∪
C
|
s
B
∪
D
=
A
|
s
B