Metamath Proof Explorer


Theorem scutun12

Description: Union law for surreal cuts. (Contributed by Scott Fenton, 9-Dec-2021)

Ref Expression
Assertion scutun12 A s B C s A | s B A | s B s D A C | s B D = A | s B

Proof

Step Hyp Ref Expression
1 simp1 A s B C s A | s B A | s B s D A s B
2 scutcut A s B A | s B No A s A | s B A | s B s B
3 1 2 syl A s B C s A | s B A | s B s D A | s B No A s A | s B A | s B s B
4 3 simp2d A s B C s A | s B A | s B s D A s A | s B
5 simp2 A s B C s A | s B A | s B s D C s A | s B
6 ssltun1 A s A | s B C s A | s B A C s A | s B
7 4 5 6 syl2anc A s B C s A | s B A | s B s D A C s A | s B
8 3 simp3d A s B C s A | s B A | s B s D A | s B s B
9 simp3 A s B C s A | s B A | s B s D A | s B s D
10 ssltun2 A | s B s B A | s B s D A | s B s B D
11 8 9 10 syl2anc A s B C s A | s B A | s B s D A | s B s B D
12 ovex A | s B V
13 12 snnz A | s B
14 sslttr A C s A | s B A | s B s B D A | s B A C s B D
15 13 14 mp3an3 A C s A | s B A | s B s B D A C s B D
16 7 11 15 syl2anc A s B C s A | s B A | s B s D A C s B D
17 scutval A C s B D A C | s B D = ι x y No | A C s y y s B D | bday x = bday y No | A C s y y s B D
18 16 17 syl A s B C s A | s B A | s B s D A C | s B D = ι x y No | A C s y y s B D | bday x = bday y No | A C s y y s B D
19 vex x V
20 19 elima x bday y No | A C s y y s B D z y No | A C s y y s B D z bday x
21 sneq y = z y = z
22 21 breq2d y = z A C s y A C s z
23 21 breq1d y = z y s B D z s B D
24 22 23 anbi12d y = z A C s y y s B D A C s z z s B D
25 24 rexrab z y No | A C s y y s B D z bday x z No A C s z z s B D z bday x
26 20 25 bitri x bday y No | A C s y y s B D z No A C s z z s B D z bday x
27 simplr A s B C s A | s B A | s B s D z No A C s z z s B D z No
28 bdayfn bday Fn No
29 fnbrfvb bday Fn No z No bday z = x z bday x
30 28 29 mpan z No bday z = x z bday x
31 27 30 syl A s B C s A | s B A | s B s D z No A C s z z s B D bday z = x z bday x
32 simpll1 A s B C s A | s B A | s B s D z No A C s z z s B D A s B
33 scutbday A s B bday A | s B = bday y No | A s y y s B
34 32 33 syl A s B C s A | s B A | s B s D z No A C s z z s B D bday A | s B = bday y No | A s y y s B
35 simprl A s B C s A | s B A | s B s D z No A C s z z s B D A C s z
36 ssun1 A A C
37 sssslt1 A C s z A A C A s z
38 36 37 mpan2 A C s z A s z
39 35 38 syl A s B C s A | s B A | s B s D z No A C s z z s B D A s z
40 simprr A s B C s A | s B A | s B s D z No A C s z z s B D z s B D
41 ssun1 B B D
42 sssslt2 z s B D B B D z s B
43 41 42 mpan2 z s B D z s B
44 40 43 syl A s B C s A | s B A | s B s D z No A C s z z s B D z s B
45 39 44 jca A s B C s A | s B A | s B s D z No A C s z z s B D A s z z s B
46 21 breq2d y = z A s y A s z
47 21 breq1d y = z y s B z s B
48 46 47 anbi12d y = z A s y y s B A s z z s B
49 48 elrab z y No | A s y y s B z No A s z z s B
50 27 45 49 sylanbrc A s B C s A | s B A | s B s D z No A C s z z s B D z y No | A s y y s B
51 ssrab2 y No | A s y y s B No
52 fnfvima bday Fn No y No | A s y y s B No z y No | A s y y s B bday z bday y No | A s y y s B
53 28 51 52 mp3an12 z y No | A s y y s B bday z bday y No | A s y y s B
54 50 53 syl A s B C s A | s B A | s B s D z No A C s z z s B D bday z bday y No | A s y y s B
55 intss1 bday z bday y No | A s y y s B bday y No | A s y y s B bday z
56 54 55 syl A s B C s A | s B A | s B s D z No A C s z z s B D bday y No | A s y y s B bday z
57 34 56 eqsstrd A s B C s A | s B A | s B s D z No A C s z z s B D bday A | s B bday z
58 sseq2 bday z = x bday A | s B bday z bday A | s B x
59 58 biimpd bday z = x bday A | s B bday z bday A | s B x
60 59 com12 bday A | s B bday z bday z = x bday A | s B x
61 57 60 syl A s B C s A | s B A | s B s D z No A C s z z s B D bday z = x bday A | s B x
62 31 61 sylbird A s B C s A | s B A | s B s D z No A C s z z s B D z bday x bday A | s B x
63 62 ex A s B C s A | s B A | s B s D z No A C s z z s B D z bday x bday A | s B x
64 63 impd A s B C s A | s B A | s B s D z No A C s z z s B D z bday x bday A | s B x
65 64 rexlimdva A s B C s A | s B A | s B s D z No A C s z z s B D z bday x bday A | s B x
66 26 65 syl5bi A s B C s A | s B A | s B s D x bday y No | A C s y y s B D bday A | s B x
67 66 ralrimiv A s B C s A | s B A | s B s D x bday y No | A C s y y s B D bday A | s B x
68 ssint bday A | s B bday y No | A C s y y s B D x bday y No | A C s y y s B D bday A | s B x
69 67 68 sylibr A s B C s A | s B A | s B s D bday A | s B bday y No | A C s y y s B D
70 3 simp1d A s B C s A | s B A | s B s D A | s B No
71 7 11 jca A s B C s A | s B A | s B s D A C s A | s B A | s B s B D
72 sneq y = A | s B y = A | s B
73 72 breq2d y = A | s B A C s y A C s A | s B
74 72 breq1d y = A | s B y s B D A | s B s B D
75 73 74 anbi12d y = A | s B A C s y y s B D A C s A | s B A | s B s B D
76 75 elrab A | s B y No | A C s y y s B D A | s B No A C s A | s B A | s B s B D
77 70 71 76 sylanbrc A s B C s A | s B A | s B s D A | s B y No | A C s y y s B D
78 ssrab2 y No | A C s y y s B D No
79 fnfvima bday Fn No y No | A C s y y s B D No A | s B y No | A C s y y s B D bday A | s B bday y No | A C s y y s B D
80 28 78 79 mp3an12 A | s B y No | A C s y y s B D bday A | s B bday y No | A C s y y s B D
81 77 80 syl A s B C s A | s B A | s B s D bday A | s B bday y No | A C s y y s B D
82 intss1 bday A | s B bday y No | A C s y y s B D bday y No | A C s y y s B D bday A | s B
83 81 82 syl A s B C s A | s B A | s B s D bday y No | A C s y y s B D bday A | s B
84 69 83 eqssd A s B C s A | s B A | s B s D bday A | s B = bday y No | A C s y y s B D
85 conway A C s B D ∃! x y No | A C s y y s B D bday x = bday y No | A C s y y s B D
86 16 85 syl A s B C s A | s B A | s B s D ∃! x y No | A C s y y s B D bday x = bday y No | A C s y y s B D
87 fveqeq2 x = A | s B bday x = bday y No | A C s y y s B D bday A | s B = bday y No | A C s y y s B D
88 87 riota2 A | s B y No | A C s y y s B D ∃! x y No | A C s y y s B D bday x = bday y No | A C s y y s B D bday A | s B = bday y No | A C s y y s B D ι x y No | A C s y y s B D | bday x = bday y No | A C s y y s B D = A | s B
89 77 86 88 syl2anc A s B C s A | s B A | s B s D bday A | s B = bday y No | A C s y y s B D ι x y No | A C s y y s B D | bday x = bday y No | A C s y y s B D = A | s B
90 84 89 mpbid A s B C s A | s B A | s B s D ι x y No | A C s y y s B D | bday x = bday y No | A C s y y s B D = A | s B
91 90 eqcomd A s B C s A | s B A | s B s D A | s B = ι x y No | A C s y y s B D | bday x = bday y No | A C s y y s B D
92 18 91 eqtr4d A s B C s A | s B A | s B s D A C | s B D = A | s B