Metamath Proof Explorer


Theorem sepfsepc

Description: If two sets are separated by a continuous function, then they are separated by closed neighborhoods. (Contributed by Zhi Wang, 9-Sep-2024)

Ref Expression
Hypothesis sepfsepc.1 φfJCnIISf-10Tf-11
Assertion sepfsepc φnneiJSmneiJTnClsdJmClsdJnm=

Proof

Step Hyp Ref Expression
1 sepfsepc.1 φfJCnIISf-10Tf-11
2 simpl fJCnIISf-10Tf-11fJCnII
3 0re 0
4 1re 1
5 0le0 00
6 3re 3
7 3ne0 30
8 6 7 rereccli 13
9 1lt3 1<3
10 recgt1i 31<30<1313<1
11 6 9 10 mp2an 0<1313<1
12 11 simpri 13<1
13 8 4 12 ltleii 131
14 iccss 010013101301
15 3 4 5 13 14 mp4an 01301
16 i0oii 131013II
17 13 16 ax-mp 013II
18 11 simpli 0<13
19 8 rexri 13*
20 elico2 013*00130000<13
21 3 19 20 mp2an 00130000<13
22 21 biimpri 0000<130013
23 22 snssd 0000<130013
24 3 5 18 23 mp3an 0013
25 icossicc 013013
26 24 25 pm3.2i 0013013013
27 sseq2 g=0130g0013
28 sseq1 g=013g013013013
29 27 28 anbi12d g=0130gg0130013013013
30 29 rspcev 013II0013013013gII0gg013
31 17 26 30 mp2an gII0gg013
32 iitop IITop
33 24 25 sstri 0013
34 33 15 sstri 001
35 iiuni 01=II
36 35 isnei IITop001013neiII001301gII0gg013
37 32 34 36 mp2an 013neiII001301gII0gg013
38 15 31 37 mpbir2an 013neiII0
39 38 a1i fJCnIISf-10Tf-11013neiII0
40 simprl fJCnIISf-10Tf-11Sf-10
41 2 39 40 cnneiima fJCnIISf-10Tf-11f-1013neiJS
42 halfge0 012
43 1le1 11
44 iccss 010121112101
45 3 4 42 43 44 mp4an 12101
46 io1ii 012121II
47 42 46 ax-mp 121II
48 halflt1 12<1
49 halfre 12
50 49 rexri 12*
51 elioc2 12*11121112<111
52 50 4 51 mp2an 1121112<111
53 52 biimpri 112<1111121
54 53 snssd 112<1111121
55 4 48 43 54 mp3an 1121
56 iocssicc 121121
57 55 56 pm3.2i 1121121121
58 sseq2 h=1211h1121
59 sseq1 h=121h121121121
60 58 59 anbi12d h=1211hh1211121121121
61 60 rspcev 121II1121121121hII1hh121
62 47 57 61 mp2an hII1hh121
63 55 56 sstri 1121
64 63 45 sstri 101
65 35 isnei IITop101121neiII112101hII1hh121
66 32 64 65 mp2an 121neiII112101hII1hh121
67 45 62 66 mpbir2an 121neiII1
68 67 a1i fJCnIISf-10Tf-11121neiII1
69 simprr fJCnIISf-10Tf-11Tf-11
70 2 68 69 cnneiima fJCnIISf-10Tf-11f-1121neiJT
71 icccldii 00131013ClsdII
72 5 13 71 mp2an 013ClsdII
73 cnclima fJCnII013ClsdIIf-1013ClsdJ
74 2 72 73 sylancl fJCnIISf-10Tf-11f-1013ClsdJ
75 icccldii 01211121ClsdII
76 42 43 75 mp2an 121ClsdII
77 cnclima fJCnII121ClsdIIf-1121ClsdJ
78 2 76 77 sylancl fJCnIISf-10Tf-11f-1121ClsdJ
79 eqid J=J
80 79 35 cnf fJCnIIf:J01
81 80 ffund fJCnIIFunf
82 2 81 syl fJCnIISf-10Tf-11Funf
83 0xr 0*
84 1xr 1*
85 2lt3 2<3
86 2re 2
87 2pos 0<2
88 3pos 0<3
89 86 6 87 88 ltrecii 2<313<12
90 85 89 mpbi 13<12
91 iccdisj2 0*1*13<12013121=
92 83 84 90 91 mp3an 013121=
93 92 a1i fJCnIISf-10Tf-11013121=
94 ssidd fJCnIISf-10Tf-11f-1013f-1013
95 ssidd fJCnIISf-10Tf-11f-1121f-1121
96 82 93 94 95 predisj fJCnIISf-10Tf-11f-1013f-1121=
97 eleq1 n=f-1013nClsdJf-1013ClsdJ
98 ineq1 n=f-1013nm=f-1013m
99 98 eqeq1d n=f-1013nm=f-1013m=
100 97 99 3anbi13d n=f-1013nClsdJmClsdJnm=f-1013ClsdJmClsdJf-1013m=
101 eleq1 m=f-1121mClsdJf-1121ClsdJ
102 ineq2 m=f-1121f-1013m=f-1013f-1121
103 102 eqeq1d m=f-1121f-1013m=f-1013f-1121=
104 101 103 3anbi23d m=f-1121f-1013ClsdJmClsdJf-1013m=f-1013ClsdJf-1121ClsdJf-1013f-1121=
105 100 104 rspc2ev f-1013neiJSf-1121neiJTf-1013ClsdJf-1121ClsdJf-1013f-1121=nneiJSmneiJTnClsdJmClsdJnm=
106 41 70 74 78 96 105 syl113anc fJCnIISf-10Tf-11nneiJSmneiJTnClsdJmClsdJnm=
107 106 rexlimiva fJCnIISf-10Tf-11nneiJSmneiJTnClsdJmClsdJnm=
108 1 107 syl φnneiJSmneiJTnClsdJmClsdJnm=