Metamath Proof Explorer


Theorem sge0fsum

Description: The arbitrary sum of a finite set of nonnegative extended real numbers is equal to the sum of those numbers, when none of them is +oo (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses sge0fsum.x φXFin
sge0fsum.f φF:X0+∞
Assertion sge0fsum φsum^F=xXFx

Proof

Step Hyp Ref Expression
1 sge0fsum.x φXFin
2 sge0fsum.f φF:X0+∞
3 2 fge0icoicc φF:X0+∞
4 1 3 sge0xrcl φsum^F*
5 rge0ssre 0+∞
6 2 ffvelcdmda φxXFx0+∞
7 5 6 sselid φxXFx
8 1 7 fsumrecl φxXFx
9 8 rexrd φxXFx*
10 1 2 sge0reval φsum^F=suprany𝒫XFinxyFx*<
11 simpr φwrany𝒫XFinxyFxwrany𝒫XFinxyFx
12 vex wV
13 12 a1i φwrany𝒫XFinxyFxwV
14 eqid y𝒫XFinxyFx=y𝒫XFinxyFx
15 14 elrnmpt wVwrany𝒫XFinxyFxy𝒫XFinw=xyFx
16 13 15 syl φwrany𝒫XFinxyFxwrany𝒫XFinxyFxy𝒫XFinw=xyFx
17 11 16 mpbid φwrany𝒫XFinxyFxy𝒫XFinw=xyFx
18 simp3 φy𝒫XFinw=xyFxw=xyFx
19 1 adantr φy𝒫XFinXFin
20 2 fge0npnf φ¬+∞ranF
21 3 20 fge0iccre φF:X
22 21 adantr φy𝒫XFinF:X
23 22 adantr φy𝒫XFinxXF:X
24 simpr φy𝒫XFinxXxX
25 23 24 ffvelcdmd φy𝒫XFinxXFx
26 0xr 0*
27 26 a1i φy𝒫XFinxX0*
28 pnfxr +∞*
29 28 a1i φy𝒫XFinxX+∞*
30 3 adantr φy𝒫XFinF:X0+∞
31 30 ffvelcdmda φy𝒫XFinxXFx0+∞
32 iccgelb 0*+∞*Fx0+∞0Fx
33 27 29 31 32 syl3anc φy𝒫XFinxX0Fx
34 elinel1 y𝒫XFiny𝒫X
35 elpwi y𝒫XyX
36 34 35 syl y𝒫XFinyX
37 36 adantl φy𝒫XFinyX
38 19 25 33 37 fsumless φy𝒫XFinxyFxxXFx
39 38 3adant3 φy𝒫XFinw=xyFxxyFxxXFx
40 18 39 eqbrtrd φy𝒫XFinw=xyFxwxXFx
41 40 3exp φy𝒫XFinw=xyFxwxXFx
42 41 rexlimdv φy𝒫XFinw=xyFxwxXFx
43 42 adantr φwrany𝒫XFinxyFxy𝒫XFinw=xyFxwxXFx
44 17 43 mpd φwrany𝒫XFinxyFxwxXFx
45 44 ralrimiva φwrany𝒫XFinxyFxwxXFx
46 elinel2 y𝒫XFinyFin
47 46 adantl φy𝒫XFinyFin
48 22 adantr φy𝒫XFinxyF:X
49 37 sselda φy𝒫XFinxyxX
50 48 49 ffvelcdmd φy𝒫XFinxyFx
51 47 50 fsumrecl φy𝒫XFinxyFx
52 51 rexrd φy𝒫XFinxyFx*
53 52 ralrimiva φy𝒫XFinxyFx*
54 14 rnmptss y𝒫XFinxyFx*rany𝒫XFinxyFx*
55 53 54 syl φrany𝒫XFinxyFx*
56 supxrleub rany𝒫XFinxyFx*xXFx*suprany𝒫XFinxyFx*<xXFxwrany𝒫XFinxyFxwxXFx
57 55 9 56 syl2anc φsuprany𝒫XFinxyFx*<xXFxwrany𝒫XFinxyFxwxXFx
58 45 57 mpbird φsuprany𝒫XFinxyFx*<xXFx
59 10 58 eqbrtrd φsum^FxXFx
60 ssid XX
61 60 a1i φXX
62 1 2 61 1 fsumlesge0 φxXFxsum^F
63 4 9 59 62 xrletrid φsum^F=xXFx