Description: The arbitrary sum of a finite set of nonnegative extended real numbers is equal to the sum of those numbers, when none of them is +oo (Contributed by Glauco Siliprandi, 17-Aug-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | sge0fsum.x | |
|
sge0fsum.f | |
||
Assertion | sge0fsum | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sge0fsum.x | |
|
2 | sge0fsum.f | |
|
3 | 2 | fge0icoicc | |
4 | 1 3 | sge0xrcl | |
5 | rge0ssre | |
|
6 | 2 | ffvelcdmda | |
7 | 5 6 | sselid | |
8 | 1 7 | fsumrecl | |
9 | 8 | rexrd | |
10 | 1 2 | sge0reval | |
11 | simpr | |
|
12 | vex | |
|
13 | 12 | a1i | |
14 | eqid | |
|
15 | 14 | elrnmpt | |
16 | 13 15 | syl | |
17 | 11 16 | mpbid | |
18 | simp3 | |
|
19 | 1 | adantr | |
20 | 2 | fge0npnf | |
21 | 3 20 | fge0iccre | |
22 | 21 | adantr | |
23 | 22 | adantr | |
24 | simpr | |
|
25 | 23 24 | ffvelcdmd | |
26 | 0xr | |
|
27 | 26 | a1i | |
28 | pnfxr | |
|
29 | 28 | a1i | |
30 | 3 | adantr | |
31 | 30 | ffvelcdmda | |
32 | iccgelb | |
|
33 | 27 29 31 32 | syl3anc | |
34 | elinel1 | |
|
35 | elpwi | |
|
36 | 34 35 | syl | |
37 | 36 | adantl | |
38 | 19 25 33 37 | fsumless | |
39 | 38 | 3adant3 | |
40 | 18 39 | eqbrtrd | |
41 | 40 | 3exp | |
42 | 41 | rexlimdv | |
43 | 42 | adantr | |
44 | 17 43 | mpd | |
45 | 44 | ralrimiva | |
46 | elinel2 | |
|
47 | 46 | adantl | |
48 | 22 | adantr | |
49 | 37 | sselda | |
50 | 48 49 | ffvelcdmd | |
51 | 47 50 | fsumrecl | |
52 | 51 | rexrd | |
53 | 52 | ralrimiva | |
54 | 14 | rnmptss | |
55 | 53 54 | syl | |
56 | supxrleub | |
|
57 | 55 9 56 | syl2anc | |
58 | 45 57 | mpbird | |
59 | 10 58 | eqbrtrd | |
60 | ssid | |
|
61 | 60 | a1i | |
62 | 1 2 61 1 | fsumlesge0 | |
63 | 4 9 59 62 | xrletrid | |