Metamath Proof Explorer


Theorem siilem1

Description: Lemma for sii . (Contributed by NM, 23-Nov-2007) (New usage is discouraged.)

Ref Expression
Hypotheses siii.1 X=BaseSetU
siii.6 N=normCVU
siii.7 P=𝑖OLDU
siii.9 UCPreHilOLD
siii.a AX
siii.b BX
sii1.3 M=-vU
sii1.4 S=𝑠OLDU
sii1.c C
sii1.r CAPB
sii1.z 0CAPB
Assertion siilem1 BPA=CNB2APBCNB2NANB

Proof

Step Hyp Ref Expression
1 siii.1 X=BaseSetU
2 siii.6 N=normCVU
3 siii.7 P=𝑖OLDU
4 siii.9 UCPreHilOLD
5 siii.a AX
6 siii.b BX
7 sii1.3 M=-vU
8 sii1.4 S=𝑠OLDU
9 sii1.c C
10 sii1.r CAPB
11 sii1.z 0CAPB
12 4 phnvi UNrmCVec
13 9 cjcli C
14 1 8 nvscl UNrmCVecCBXCSBX
15 12 13 6 14 mp3an CSBX
16 1 7 nvmcl UNrmCVecAXCSBXAMCSBX
17 12 5 15 16 mp3an AMCSBX
18 1 2 12 17 nvcli NAMCSB
19 18 sqge0i 0NAMCSB2
20 17 5 15 3pm3.2i AMCSBXAXCSBX
21 1 7 3 dipsubdi UCPreHilOLDAMCSBXAXCSBXAMCSBPAMCSB=AMCSBPAAMCSBPCSB
22 4 20 21 mp2an AMCSBPAMCSB=AMCSBPAAMCSBPCSB
23 1 2 3 ipidsq UNrmCVecAMCSBXAMCSBPAMCSB=NAMCSB2
24 12 17 23 mp2an AMCSBPAMCSB=NAMCSB2
25 13 6 15 3pm3.2i CBXCSBX
26 1 8 3 dipass UCPreHilOLDCBXCSBXCSBPCSB=CBPCSB
27 4 25 26 mp2an CSBPCSB=CBPCSB
28 6 9 6 3pm3.2i BXCBX
29 1 8 3 dipassr2 UCPreHilOLDBXCBXBPCSB=CBPB
30 4 28 29 mp2an BPCSB=CBPB
31 1 2 3 ipidsq UNrmCVecBXBPB=NB2
32 12 6 31 mp2an BPB=NB2
33 32 oveq2i CBPB=CNB2
34 30 33 eqtri BPCSB=CNB2
35 34 oveq2i CBPCSB=CCNB2
36 27 35 eqtri CSBPCSB=CCNB2
37 36 oveq2i CAPBCSBPCSB=CAPBCCNB2
38 37 oveq2i NA2-CBPA-CAPBCSBPCSB=NA2-CBPA-CAPBCCNB2
39 1 2 12 5 nvcli NA
40 39 recni NA
41 40 sqcli NA2
42 1 3 dipcl UNrmCVecBXAXBPA
43 12 6 5 42 mp3an BPA
44 13 43 mulcli CBPA
45 10 recni CAPB
46 1 2 12 6 nvcli NB
47 46 recni NB
48 47 sqcli NB2
49 9 48 mulcli CNB2
50 13 49 mulcli CCNB2
51 sub4 NA2CBPACAPBCCNB2NA2-CBPA-CAPBCCNB2=NA2-CAPB-CBPACCNB2
52 41 44 45 50 51 mp4an NA2-CBPA-CAPBCCNB2=NA2-CAPB-CBPACCNB2
53 38 52 eqtri NA2-CBPA-CAPBCSBPCSB=NA2-CAPB-CBPACCNB2
54 5 15 5 3pm3.2i AXCSBXAX
55 1 7 3 dipsubdir UCPreHilOLDAXCSBXAXAMCSBPA=APACSBPA
56 4 54 55 mp2an AMCSBPA=APACSBPA
57 1 2 3 ipidsq UNrmCVecAXAPA=NA2
58 12 5 57 mp2an APA=NA2
59 13 6 5 3pm3.2i CBXAX
60 1 8 3 dipass UCPreHilOLDCBXAXCSBPA=CBPA
61 4 59 60 mp2an CSBPA=CBPA
62 58 61 oveq12i APACSBPA=NA2CBPA
63 56 62 eqtri AMCSBPA=NA2CBPA
64 5 15 15 3pm3.2i AXCSBXCSBX
65 1 7 3 dipsubdir UCPreHilOLDAXCSBXCSBXAMCSBPCSB=APCSBCSBPCSB
66 4 64 65 mp2an AMCSBPCSB=APCSBCSBPCSB
67 5 9 6 3pm3.2i AXCBX
68 1 8 3 dipassr2 UCPreHilOLDAXCBXAPCSB=CAPB
69 4 67 68 mp2an APCSB=CAPB
70 69 oveq1i APCSBCSBPCSB=CAPBCSBPCSB
71 66 70 eqtri AMCSBPCSB=CAPBCSBPCSB
72 63 71 oveq12i AMCSBPAAMCSBPCSB=NA2-CBPA-CAPBCSBPCSB
73 13 43 49 subdii CBPACNB2=CBPACCNB2
74 73 oveq2i NA2-CAPB-CBPACNB2=NA2-CAPB-CBPACCNB2
75 53 72 74 3eqtr4i AMCSBPAAMCSBPCSB=NA2-CAPB-CBPACNB2
76 22 24 75 3eqtr3i NAMCSB2=NA2-CAPB-CBPACNB2
77 19 76 breqtri 0NA2-CAPB-CBPACNB2
78 43 49 subeq0i BPACNB2=0BPA=CNB2
79 oveq2 BPACNB2=0CBPACNB2=C0
80 13 mul01i C0=0
81 79 80 eqtrdi BPACNB2=0CBPACNB2=0
82 78 81 sylbir BPA=CNB2CBPACNB2=0
83 82 oveq2d BPA=CNB2NA2-CAPB-CBPACNB2=NA2-CAPB-0
84 39 resqcli NA2
85 84 recni NA2
86 85 45 subcli NA2CAPB
87 86 subid1i NA2-CAPB-0=NA2CAPB
88 83 87 eqtrdi BPA=CNB2NA2-CAPB-CBPACNB2=NA2CAPB
89 77 88 breqtrid BPA=CNB20NA2CAPB
90 84 10 subge0i 0NA2CAPBCAPBNA2
91 89 90 sylib BPA=CNB2CAPBNA2
92 46 resqcli NB2
93 46 sqge0i 0NB2
94 92 93 pm3.2i NB20NB2
95 10 84 94 3pm3.2i CAPBNA2NB20NB2
96 lemul1a CAPBNA2NB20NB2CAPBNA2CAPBNB2NA2NB2
97 95 96 mpan CAPBNA2CAPBNB2NA2NB2
98 91 97 syl BPA=CNB2CAPBNB2NA2NB2
99 40 47 sqmuli NANB2=NA2NB2
100 98 99 breqtrrdi BPA=CNB2CAPBNB2NANB2
101 10 92 mulge0i 0CAPB0NB20CAPBNB2
102 11 93 101 mp2an 0CAPBNB2
103 39 46 remulcli NANB
104 103 sqge0i 0NANB2
105 10 92 remulcli CAPBNB2
106 103 resqcli NANB2
107 105 106 sqrtlei 0CAPBNB20NANB2CAPBNB2NANB2CAPBNB2NANB2
108 102 104 107 mp2an CAPBNB2NANB2CAPBNB2NANB2
109 100 108 sylib BPA=CNB2CAPBNB2NANB2
110 1 3 dipcl UNrmCVecAXBXAPB
111 12 5 6 110 mp3an APB
112 9 111 mulcomi CAPB=APBC
113 112 oveq1i CAPBNB2=APBCNB2
114 92 recni NB2
115 111 9 114 mulassi APBCNB2=APBCNB2
116 113 115 eqtri CAPBNB2=APBCNB2
117 116 fveq2i CAPBNB2=APBCNB2
118 1 2 nvge0 UNrmCVecAX0NA
119 12 5 118 mp2an 0NA
120 1 2 nvge0 UNrmCVecBX0NB
121 12 6 120 mp2an 0NB
122 39 46 mulge0i 0NA0NB0NANB
123 119 121 122 mp2an 0NANB
124 103 sqrtsqi 0NANBNANB2=NANB
125 123 124 ax-mp NANB2=NANB
126 109 117 125 3brtr3g BPA=CNB2APBCNB2NANB