| Step |
Hyp |
Ref |
Expression |
| 1 |
|
smfpimcclem.n |
|
| 2 |
|
smfpimcclem.z |
|
| 3 |
|
smfpimcclem.s |
|
| 4 |
|
smfpimcclem.c |
|
| 5 |
|
smfpimcclem.h |
|
| 6 |
|
nfcv |
|
| 7 |
6
|
ssrab2f |
|
| 8 |
|
eqid |
|
| 9 |
8 3
|
rabexd |
|
| 10 |
9
|
adantr |
|
| 11 |
|
simpl |
|
| 12 |
|
simpr |
|
| 13 |
|
eqid |
|
| 14 |
13
|
elrnmpt1 |
|
| 15 |
12 10 14
|
syl2anc |
|
| 16 |
11 15
|
jca |
|
| 17 |
|
eleq1 |
|
| 18 |
17
|
anbi2d |
|
| 19 |
|
fveq2 |
|
| 20 |
|
id |
|
| 21 |
19 20
|
eleq12d |
|
| 22 |
18 21
|
imbi12d |
|
| 23 |
22 4
|
vtoclg |
|
| 24 |
10 16 23
|
sylc |
|
| 25 |
7 24
|
sselid |
|
| 26 |
1 25 5
|
fmptdf |
|
| 27 |
|
nfcv |
|
| 28 |
|
nfrab1 |
|
| 29 |
27 28
|
nffv |
|
| 30 |
|
nfcv |
|
| 31 |
|
nfcv |
|
| 32 |
29 31
|
nfin |
|
| 33 |
30 32
|
nfeq |
|
| 34 |
|
ineq1 |
|
| 35 |
34
|
eqeq2d |
|
| 36 |
29 6 33 35
|
elrabf |
|
| 37 |
24 36
|
sylib |
|
| 38 |
37
|
simprd |
|
| 39 |
5
|
a1i |
|
| 40 |
24
|
elexd |
|
| 41 |
39 40
|
fvmpt2d |
|
| 42 |
41
|
ineq1d |
|
| 43 |
38 42
|
eqtr4d |
|
| 44 |
43
|
ex |
|
| 45 |
1 44
|
ralrimi |
|
| 46 |
2
|
elexi |
|
| 47 |
46
|
mptex |
|
| 48 |
5 47
|
eqeltri |
|
| 49 |
|
feq1 |
|
| 50 |
|
nfcv |
|
| 51 |
|
nfmpt1 |
|
| 52 |
5 51
|
nfcxfr |
|
| 53 |
50 52
|
nfeq |
|
| 54 |
|
fveq1 |
|
| 55 |
54
|
ineq1d |
|
| 56 |
55
|
eqeq2d |
|
| 57 |
53 56
|
ralbid |
|
| 58 |
49 57
|
anbi12d |
|
| 59 |
48 58
|
spcev |
|
| 60 |
26 45 59
|
syl2anc |
|