Step |
Hyp |
Ref |
Expression |
1 |
|
smfpimcclem.n |
|
2 |
|
smfpimcclem.z |
|
3 |
|
smfpimcclem.s |
|
4 |
|
smfpimcclem.c |
|
5 |
|
smfpimcclem.h |
|
6 |
|
nfcv |
|
7 |
6
|
ssrab2f |
|
8 |
|
eqid |
|
9 |
8 3
|
rabexd |
|
10 |
9
|
adantr |
|
11 |
|
simpl |
|
12 |
|
simpr |
|
13 |
|
eqid |
|
14 |
13
|
elrnmpt1 |
|
15 |
12 10 14
|
syl2anc |
|
16 |
11 15
|
jca |
|
17 |
|
eleq1 |
|
18 |
17
|
anbi2d |
|
19 |
|
fveq2 |
|
20 |
|
id |
|
21 |
19 20
|
eleq12d |
|
22 |
18 21
|
imbi12d |
|
23 |
22 4
|
vtoclg |
|
24 |
10 16 23
|
sylc |
|
25 |
7 24
|
sselid |
|
26 |
1 25 5
|
fmptdf |
|
27 |
|
nfcv |
|
28 |
|
nfrab1 |
|
29 |
27 28
|
nffv |
|
30 |
|
nfcv |
|
31 |
|
nfcv |
|
32 |
29 31
|
nfin |
|
33 |
30 32
|
nfeq |
|
34 |
|
ineq1 |
|
35 |
34
|
eqeq2d |
|
36 |
29 6 33 35
|
elrabf |
|
37 |
24 36
|
sylib |
|
38 |
37
|
simprd |
|
39 |
5
|
a1i |
|
40 |
24
|
elexd |
|
41 |
39 40
|
fvmpt2d |
|
42 |
41
|
ineq1d |
|
43 |
38 42
|
eqtr4d |
|
44 |
43
|
ex |
|
45 |
1 44
|
ralrimi |
|
46 |
2
|
elexi |
|
47 |
46
|
mptex |
|
48 |
5 47
|
eqeltri |
|
49 |
|
feq1 |
|
50 |
|
nfcv |
|
51 |
|
nfmpt1 |
|
52 |
5 51
|
nfcxfr |
|
53 |
50 52
|
nfeq |
|
54 |
|
fveq1 |
|
55 |
54
|
ineq1d |
|
56 |
55
|
eqeq2d |
|
57 |
53 56
|
ralbid |
|
58 |
49 57
|
anbi12d |
|
59 |
48 58
|
spcev |
|
60 |
26 45 59
|
syl2anc |
|