Metamath Proof Explorer


Theorem sticksstones18

Description: Extend sticks and stones to finite sets, bijective builder. (Contributed by metakunt, 23-Oct-2024)

Ref Expression
Hypotheses sticksstones18.1 φN0
sticksstones18.2 φK0
sticksstones18.3 A=g|g:1K0i=1Kgi=N
sticksstones18.4 B=h|h:S0iShi=N
sticksstones18.5 φZ:1K1-1 ontoS
sticksstones18.6 F=aAxSaZ-1x
Assertion sticksstones18 φF:AB

Proof

Step Hyp Ref Expression
1 sticksstones18.1 φN0
2 sticksstones18.2 φK0
3 sticksstones18.3 A=g|g:1K0i=1Kgi=N
4 sticksstones18.4 B=h|h:S0iShi=N
5 sticksstones18.5 φZ:1K1-1 ontoS
6 sticksstones18.6 F=aAxSaZ-1x
7 3 eqimssi Ag|g:1K0i=1Kgi=N
8 7 a1i φAg|g:1K0i=1Kgi=N
9 8 sseld φaAag|g:1K0i=1Kgi=N
10 9 imp φaAag|g:1K0i=1Kgi=N
11 vex aV
12 feq1 g=ag:1K0a:1K0
13 simpl g=ai1Kg=a
14 13 fveq1d g=ai1Kgi=ai
15 14 sumeq2dv g=ai=1Kgi=i=1Kai
16 15 eqeq1d g=ai=1Kgi=Ni=1Kai=N
17 12 16 anbi12d g=ag:1K0i=1Kgi=Na:1K0i=1Kai=N
18 11 17 elab ag|g:1K0i=1Kgi=Na:1K0i=1Kai=N
19 10 18 sylib φaAa:1K0i=1Kai=N
20 19 simpld φaAa:1K0
21 20 adantr φaAxSa:1K0
22 f1ocnv Z:1K1-1 ontoSZ-1:S1-1 onto1K
23 5 22 syl φZ-1:S1-1 onto1K
24 f1of Z-1:S1-1 onto1KZ-1:S1K
25 23 24 syl φZ-1:S1K
26 25 adantr φaAZ-1:S1K
27 26 ffvelcdmda φaAxSZ-1x1K
28 21 27 ffvelcdmd φaAxSaZ-1x0
29 28 fmpttd φaAxSaZ-1x:S0
30 eqidd φaAiSxSaZ-1x=xSaZ-1x
31 simpr φaAiSx=ix=i
32 31 fveq2d φaAiSx=iZ-1x=Z-1i
33 32 fveq2d φaAiSx=iaZ-1x=aZ-1i
34 simpr φaAiSiS
35 fvexd φaAiSaZ-1iV
36 30 33 34 35 fvmptd φaAiSxSaZ-1xi=aZ-1i
37 36 sumeq2dv φaAiSxSaZ-1xi=iSaZ-1i
38 fveq2 n=Z-1ian=aZ-1i
39 fzfid φaA1KFin
40 5 adantr φaAZ:1K1-1 ontoS
41 f1oenfi 1KFinZ:1K1-1 ontoS1KS
42 39 40 41 syl2anc φaA1KS
43 42 ensymd φaAS1K
44 enfii 1KFinS1KSFin
45 39 43 44 syl2anc φaASFin
46 23 adantr φaAZ-1:S1-1 onto1K
47 eqidd φaAiSZ-1i=Z-1i
48 nn0sscn 0
49 48 a1i φaA0
50 fss a:1K00a:1K
51 20 49 50 syl2anc φaAa:1K
52 51 ffvelcdmda φaAn1Kan
53 38 45 46 47 52 fsumf1o φaAn=1Kan=iSaZ-1i
54 53 eqcomd φaAiSaZ-1i=n=1Kan
55 fveq2 n=ian=ai
56 55 cbvsumv n=1Kan=i=1Kai
57 56 a1i φaAn=1Kan=i=1Kai
58 19 simprd φaAi=1Kai=N
59 57 58 eqtrd φaAn=1Kan=N
60 54 59 eqtrd φaAiSaZ-1i=N
61 37 60 eqtrd φaAiSxSaZ-1xi=N
62 29 61 jca φaAxSaZ-1x:S0iSxSaZ-1xi=N
63 fzfid φ1KFin
64 63 adantr φaA1KFin
65 63 5 41 syl2anc φ1KS
66 65 ensymd φS1K
67 66 adantr φaAS1K
68 64 67 44 syl2anc φaASFin
69 68 mptexd φaAxSaZ-1xV
70 feq1 h=xSaZ-1xh:S0xSaZ-1x:S0
71 simpl h=xSaZ-1xiSh=xSaZ-1x
72 71 fveq1d h=xSaZ-1xiShi=xSaZ-1xi
73 72 sumeq2dv h=xSaZ-1xiShi=iSxSaZ-1xi
74 73 eqeq1d h=xSaZ-1xiShi=NiSxSaZ-1xi=N
75 70 74 anbi12d h=xSaZ-1xh:S0iShi=NxSaZ-1x:S0iSxSaZ-1xi=N
76 75 elabg xSaZ-1xVxSaZ-1xh|h:S0iShi=NxSaZ-1x:S0iSxSaZ-1xi=N
77 69 76 syl φaAxSaZ-1xh|h:S0iShi=NxSaZ-1x:S0iSxSaZ-1xi=N
78 62 77 mpbird φaAxSaZ-1xh|h:S0iShi=N
79 4 a1i φaAB=h|h:S0iShi=N
80 78 79 eleqtrrd φaAxSaZ-1xB
81 80 6 fmptd φF:AB