Description: Lemma for strong state theorem: if closed subspace A is not contained in B , there is a unit vector u in their difference. (Contributed by NM, 25-Oct-1999) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | strlem1.1 | |
|
strlem1.2 | |
||
Assertion | strlem1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | strlem1.1 | |
|
2 | strlem1.2 | |
|
3 | neq0 | |
|
4 | ssdif0 | |
|
5 | 3 4 | xchnxbir | |
6 | eldifi | |
|
7 | 1 | cheli | |
8 | normcl | |
|
9 | 6 7 8 | 3syl | |
10 | ch0 | |
|
11 | 2 10 | ax-mp | |
12 | eldifn | |
|
13 | 11 12 | mt2 | |
14 | eleq1 | |
|
15 | 13 14 | mtbiri | |
16 | 15 | con2i | |
17 | norm-i | |
|
18 | 6 7 17 | 3syl | |
19 | 16 18 | mtbird | |
20 | 19 | neqned | |
21 | 9 20 | rereccld | |
22 | 21 | recnd | |
23 | 1 | chshii | |
24 | shmulcl | |
|
25 | 23 24 | mp3an1 | |
26 | 25 | ex | |
27 | 22 26 | syl | |
28 | 9 | recnd | |
29 | 2 | chshii | |
30 | shmulcl | |
|
31 | 29 30 | mp3an1 | |
32 | 31 | ex | |
33 | 28 32 | syl | |
34 | 28 20 | recidd | |
35 | 34 | oveq1d | |
36 | 6 7 | syl | |
37 | ax-hvmulass | |
|
38 | 28 22 36 37 | syl3anc | |
39 | ax-hvmulid | |
|
40 | 6 7 39 | 3syl | |
41 | 35 38 40 | 3eqtr3d | |
42 | 41 | eleq1d | |
43 | 33 42 | sylibd | |
44 | 43 | con3d | |
45 | 27 44 | anim12d | |
46 | eldif | |
|
47 | eldif | |
|
48 | 45 46 47 | 3imtr4g | |
49 | 48 | pm2.43i | |
50 | norm-iii | |
|
51 | 22 36 50 | syl2anc | |
52 | 15 | necon2ai | |
53 | normgt0 | |
|
54 | 6 7 53 | 3syl | |
55 | 52 54 | mpbid | |
56 | 1re | |
|
57 | 0le1 | |
|
58 | divge0 | |
|
59 | 56 57 58 | mpanl12 | |
60 | 9 55 59 | syl2anc | |
61 | 21 60 | absidd | |
62 | 61 | oveq1d | |
63 | 28 20 | recid2d | |
64 | 51 62 63 | 3eqtrd | |
65 | fveqeq2 | |
|
66 | 65 | rspcev | |
67 | 49 64 66 | syl2anc | |
68 | 67 | exlimiv | |
69 | 5 68 | sylbi | |