Description: A group multiple is the same if evaluated in a subgroup. (Contributed by Mario Carneiro, 15-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | subgmulgcl.t | |
|
subgmulg.h | |
||
subgmulg.t | |
||
Assertion | subgmulg | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subgmulgcl.t | |
|
2 | subgmulg.h | |
|
3 | subgmulg.t | |
|
4 | eqid | |
|
5 | 2 4 | subg0 | |
6 | 5 | 3ad2ant1 | |
7 | 6 | ifeq1d | |
8 | eqid | |
|
9 | 2 8 | ressplusg | |
10 | 9 | 3ad2ant1 | |
11 | 10 | seqeq2d | |
12 | 11 | adantr | |
13 | 12 | fveq1d | |
14 | 13 | ifeq1d | |
15 | simp2 | |
|
16 | 15 | zred | |
17 | 0re | |
|
18 | axlttri | |
|
19 | 16 17 18 | sylancl | |
20 | ioran | |
|
21 | 19 20 | bitrdi | |
22 | 21 | biimpar | |
23 | simpl1 | |
|
24 | 15 | adantr | |
25 | 24 | znegcld | |
26 | 16 | lt0neg1d | |
27 | 26 | biimpa | |
28 | elnnz | |
|
29 | 25 27 28 | sylanbrc | |
30 | eqid | |
|
31 | 30 | subgss | |
32 | 31 | 3ad2ant1 | |
33 | simp3 | |
|
34 | 32 33 | sseldd | |
35 | 34 | adantr | |
36 | eqid | |
|
37 | 30 8 1 36 | mulgnn | |
38 | 29 35 37 | syl2anc | |
39 | 33 | adantr | |
40 | 1 | subgmulgcl | |
41 | 23 25 39 40 | syl3anc | |
42 | 38 41 | eqeltrrd | |
43 | eqid | |
|
44 | eqid | |
|
45 | 2 43 44 | subginv | |
46 | 23 42 45 | syl2anc | |
47 | 22 46 | syldan | |
48 | 11 | adantr | |
49 | 48 | fveq1d | |
50 | 49 | fveq2d | |
51 | 47 50 | eqtrd | |
52 | 51 | anassrs | |
53 | 52 | ifeq2da | |
54 | 14 53 | eqtrd | |
55 | 54 | ifeq2da | |
56 | 7 55 | eqtrd | |
57 | 30 8 4 43 1 36 | mulgval | |
58 | 15 34 57 | syl2anc | |
59 | 2 | subgbas | |
60 | 59 | 3ad2ant1 | |
61 | 33 60 | eleqtrd | |
62 | eqid | |
|
63 | eqid | |
|
64 | eqid | |
|
65 | eqid | |
|
66 | 62 63 64 44 3 65 | mulgval | |
67 | 15 61 66 | syl2anc | |
68 | 56 58 67 | 3eqtr4d | |