| Step |
Hyp |
Ref |
Expression |
| 1 |
|
subgmulgcl.t |
|
| 2 |
|
subgmulg.h |
|
| 3 |
|
subgmulg.t |
|
| 4 |
|
eqid |
|
| 5 |
2 4
|
subg0 |
|
| 6 |
5
|
3ad2ant1 |
|
| 7 |
6
|
ifeq1d |
|
| 8 |
|
eqid |
|
| 9 |
2 8
|
ressplusg |
|
| 10 |
9
|
3ad2ant1 |
|
| 11 |
10
|
seqeq2d |
|
| 12 |
11
|
adantr |
|
| 13 |
12
|
fveq1d |
|
| 14 |
13
|
ifeq1d |
|
| 15 |
|
simp2 |
|
| 16 |
15
|
zred |
|
| 17 |
|
0re |
|
| 18 |
|
axlttri |
|
| 19 |
16 17 18
|
sylancl |
|
| 20 |
|
ioran |
|
| 21 |
19 20
|
bitrdi |
|
| 22 |
21
|
biimpar |
|
| 23 |
|
simpl1 |
|
| 24 |
15
|
adantr |
|
| 25 |
24
|
znegcld |
|
| 26 |
16
|
lt0neg1d |
|
| 27 |
26
|
biimpa |
|
| 28 |
|
elnnz |
|
| 29 |
25 27 28
|
sylanbrc |
|
| 30 |
|
eqid |
|
| 31 |
30
|
subgss |
|
| 32 |
31
|
3ad2ant1 |
|
| 33 |
|
simp3 |
|
| 34 |
32 33
|
sseldd |
|
| 35 |
34
|
adantr |
|
| 36 |
|
eqid |
|
| 37 |
30 8 1 36
|
mulgnn |
|
| 38 |
29 35 37
|
syl2anc |
|
| 39 |
33
|
adantr |
|
| 40 |
1
|
subgmulgcl |
|
| 41 |
23 25 39 40
|
syl3anc |
|
| 42 |
38 41
|
eqeltrrd |
|
| 43 |
|
eqid |
|
| 44 |
|
eqid |
|
| 45 |
2 43 44
|
subginv |
|
| 46 |
23 42 45
|
syl2anc |
|
| 47 |
22 46
|
syldan |
|
| 48 |
11
|
adantr |
|
| 49 |
48
|
fveq1d |
|
| 50 |
49
|
fveq2d |
|
| 51 |
47 50
|
eqtrd |
|
| 52 |
51
|
anassrs |
|
| 53 |
52
|
ifeq2da |
|
| 54 |
14 53
|
eqtrd |
|
| 55 |
54
|
ifeq2da |
|
| 56 |
7 55
|
eqtrd |
|
| 57 |
30 8 4 43 1 36
|
mulgval |
|
| 58 |
15 34 57
|
syl2anc |
|
| 59 |
2
|
subgbas |
|
| 60 |
59
|
3ad2ant1 |
|
| 61 |
33 60
|
eleqtrd |
|
| 62 |
|
eqid |
|
| 63 |
|
eqid |
|
| 64 |
|
eqid |
|
| 65 |
|
eqid |
|
| 66 |
62 63 64 44 3 65
|
mulgval |
|
| 67 |
15 61 66
|
syl2anc |
|
| 68 |
56 58 67
|
3eqtr4d |
|