| Step | Hyp | Ref | Expression | 
						
							| 1 |  | subgmulgcl.t |  | 
						
							| 2 |  | subgmulg.h |  | 
						
							| 3 |  | subgmulg.t |  | 
						
							| 4 |  | eqid |  | 
						
							| 5 | 2 4 | subg0 |  | 
						
							| 6 | 5 | 3ad2ant1 |  | 
						
							| 7 | 6 | ifeq1d |  | 
						
							| 8 |  | eqid |  | 
						
							| 9 | 2 8 | ressplusg |  | 
						
							| 10 | 9 | 3ad2ant1 |  | 
						
							| 11 | 10 | seqeq2d |  | 
						
							| 12 | 11 | adantr |  | 
						
							| 13 | 12 | fveq1d |  | 
						
							| 14 | 13 | ifeq1d |  | 
						
							| 15 |  | simp2 |  | 
						
							| 16 | 15 | zred |  | 
						
							| 17 |  | 0re |  | 
						
							| 18 |  | axlttri |  | 
						
							| 19 | 16 17 18 | sylancl |  | 
						
							| 20 |  | ioran |  | 
						
							| 21 | 19 20 | bitrdi |  | 
						
							| 22 | 21 | biimpar |  | 
						
							| 23 |  | simpl1 |  | 
						
							| 24 | 15 | adantr |  | 
						
							| 25 | 24 | znegcld |  | 
						
							| 26 | 16 | lt0neg1d |  | 
						
							| 27 | 26 | biimpa |  | 
						
							| 28 |  | elnnz |  | 
						
							| 29 | 25 27 28 | sylanbrc |  | 
						
							| 30 |  | eqid |  | 
						
							| 31 | 30 | subgss |  | 
						
							| 32 | 31 | 3ad2ant1 |  | 
						
							| 33 |  | simp3 |  | 
						
							| 34 | 32 33 | sseldd |  | 
						
							| 35 | 34 | adantr |  | 
						
							| 36 |  | eqid |  | 
						
							| 37 | 30 8 1 36 | mulgnn |  | 
						
							| 38 | 29 35 37 | syl2anc |  | 
						
							| 39 | 33 | adantr |  | 
						
							| 40 | 1 | subgmulgcl |  | 
						
							| 41 | 23 25 39 40 | syl3anc |  | 
						
							| 42 | 38 41 | eqeltrrd |  | 
						
							| 43 |  | eqid |  | 
						
							| 44 |  | eqid |  | 
						
							| 45 | 2 43 44 | subginv |  | 
						
							| 46 | 23 42 45 | syl2anc |  | 
						
							| 47 | 22 46 | syldan |  | 
						
							| 48 | 11 | adantr |  | 
						
							| 49 | 48 | fveq1d |  | 
						
							| 50 | 49 | fveq2d |  | 
						
							| 51 | 47 50 | eqtrd |  | 
						
							| 52 | 51 | anassrs |  | 
						
							| 53 | 52 | ifeq2da |  | 
						
							| 54 | 14 53 | eqtrd |  | 
						
							| 55 | 54 | ifeq2da |  | 
						
							| 56 | 7 55 | eqtrd |  | 
						
							| 57 | 30 8 4 43 1 36 | mulgval |  | 
						
							| 58 | 15 34 57 | syl2anc |  | 
						
							| 59 | 2 | subgbas |  | 
						
							| 60 | 59 | 3ad2ant1 |  | 
						
							| 61 | 33 60 | eleqtrd |  | 
						
							| 62 |  | eqid |  | 
						
							| 63 |  | eqid |  | 
						
							| 64 |  | eqid |  | 
						
							| 65 |  | eqid |  | 
						
							| 66 | 62 63 64 44 3 65 | mulgval |  | 
						
							| 67 | 15 61 66 | syl2anc |  | 
						
							| 68 | 56 58 67 | 3eqtr4d |  |