Metamath Proof Explorer


Theorem subgmulg

Description: A group multiple is the same if evaluated in a subgroup. (Contributed by Mario Carneiro, 15-Jan-2015)

Ref Expression
Hypotheses subgmulgcl.t ·˙=G
subgmulg.h H=G𝑠S
subgmulg.t ˙=H
Assertion subgmulg SSubGrpGNXSN·˙X=N˙X

Proof

Step Hyp Ref Expression
1 subgmulgcl.t ·˙=G
2 subgmulg.h H=G𝑠S
3 subgmulg.t ˙=H
4 eqid 0G=0G
5 2 4 subg0 SSubGrpG0G=0H
6 5 3ad2ant1 SSubGrpGNXS0G=0H
7 6 ifeq1d SSubGrpGNXSifN=00Gif0<Nseq1+G×XNinvgGseq1+G×XN=ifN=00Hif0<Nseq1+G×XNinvgGseq1+G×XN
8 eqid +G=+G
9 2 8 ressplusg SSubGrpG+G=+H
10 9 3ad2ant1 SSubGrpGNXS+G=+H
11 10 seqeq2d SSubGrpGNXSseq1+G×X=seq1+H×X
12 11 adantr SSubGrpGNXS¬N=0seq1+G×X=seq1+H×X
13 12 fveq1d SSubGrpGNXS¬N=0seq1+G×XN=seq1+H×XN
14 13 ifeq1d SSubGrpGNXS¬N=0if0<Nseq1+G×XNinvgGseq1+G×XN=if0<Nseq1+H×XNinvgGseq1+G×XN
15 simp2 SSubGrpGNXSN
16 15 zred SSubGrpGNXSN
17 0re 0
18 axlttri N0N<0¬N=00<N
19 16 17 18 sylancl SSubGrpGNXSN<0¬N=00<N
20 ioran ¬N=00<N¬N=0¬0<N
21 19 20 bitrdi SSubGrpGNXSN<0¬N=0¬0<N
22 21 biimpar SSubGrpGNXS¬N=0¬0<NN<0
23 simpl1 SSubGrpGNXSN<0SSubGrpG
24 15 adantr SSubGrpGNXSN<0N
25 24 znegcld SSubGrpGNXSN<0N
26 16 lt0neg1d SSubGrpGNXSN<00<N
27 26 biimpa SSubGrpGNXSN<00<N
28 elnnz NN0<N
29 25 27 28 sylanbrc SSubGrpGNXSN<0N
30 eqid BaseG=BaseG
31 30 subgss SSubGrpGSBaseG
32 31 3ad2ant1 SSubGrpGNXSSBaseG
33 simp3 SSubGrpGNXSXS
34 32 33 sseldd SSubGrpGNXSXBaseG
35 34 adantr SSubGrpGNXSN<0XBaseG
36 eqid seq1+G×X=seq1+G×X
37 30 8 1 36 mulgnn NXBaseG- N·˙X=seq1+G×XN
38 29 35 37 syl2anc SSubGrpGNXSN<0- N·˙X=seq1+G×XN
39 33 adantr SSubGrpGNXSN<0XS
40 1 subgmulgcl SSubGrpGNXS- N·˙XS
41 23 25 39 40 syl3anc SSubGrpGNXSN<0- N·˙XS
42 38 41 eqeltrrd SSubGrpGNXSN<0seq1+G×XNS
43 eqid invgG=invgG
44 eqid invgH=invgH
45 2 43 44 subginv SSubGrpGseq1+G×XNSinvgGseq1+G×XN=invgHseq1+G×XN
46 23 42 45 syl2anc SSubGrpGNXSN<0invgGseq1+G×XN=invgHseq1+G×XN
47 22 46 syldan SSubGrpGNXS¬N=0¬0<NinvgGseq1+G×XN=invgHseq1+G×XN
48 11 adantr SSubGrpGNXS¬N=0¬0<Nseq1+G×X=seq1+H×X
49 48 fveq1d SSubGrpGNXS¬N=0¬0<Nseq1+G×XN=seq1+H×XN
50 49 fveq2d SSubGrpGNXS¬N=0¬0<NinvgHseq1+G×XN=invgHseq1+H×XN
51 47 50 eqtrd SSubGrpGNXS¬N=0¬0<NinvgGseq1+G×XN=invgHseq1+H×XN
52 51 anassrs SSubGrpGNXS¬N=0¬0<NinvgGseq1+G×XN=invgHseq1+H×XN
53 52 ifeq2da SSubGrpGNXS¬N=0if0<Nseq1+H×XNinvgGseq1+G×XN=if0<Nseq1+H×XNinvgHseq1+H×XN
54 14 53 eqtrd SSubGrpGNXS¬N=0if0<Nseq1+G×XNinvgGseq1+G×XN=if0<Nseq1+H×XNinvgHseq1+H×XN
55 54 ifeq2da SSubGrpGNXSifN=00Hif0<Nseq1+G×XNinvgGseq1+G×XN=ifN=00Hif0<Nseq1+H×XNinvgHseq1+H×XN
56 7 55 eqtrd SSubGrpGNXSifN=00Gif0<Nseq1+G×XNinvgGseq1+G×XN=ifN=00Hif0<Nseq1+H×XNinvgHseq1+H×XN
57 30 8 4 43 1 36 mulgval NXBaseGN·˙X=ifN=00Gif0<Nseq1+G×XNinvgGseq1+G×XN
58 15 34 57 syl2anc SSubGrpGNXSN·˙X=ifN=00Gif0<Nseq1+G×XNinvgGseq1+G×XN
59 2 subgbas SSubGrpGS=BaseH
60 59 3ad2ant1 SSubGrpGNXSS=BaseH
61 33 60 eleqtrd SSubGrpGNXSXBaseH
62 eqid BaseH=BaseH
63 eqid +H=+H
64 eqid 0H=0H
65 eqid seq1+H×X=seq1+H×X
66 62 63 64 44 3 65 mulgval NXBaseHN˙X=ifN=00Hif0<Nseq1+H×XNinvgHseq1+H×XN
67 15 61 66 syl2anc SSubGrpGNXSN˙X=ifN=00Hif0<Nseq1+H×XNinvgHseq1+H×XN
68 56 58 67 3eqtr4d SSubGrpGNXSN·˙X=N˙X