Metamath Proof Explorer


Theorem sumodd

Description: If every term in a sum is odd, then the sum is even iff the number of terms in the sum is even. (Contributed by AV, 14-Aug-2021)

Ref Expression
Hypotheses sumeven.a φAFin
sumeven.b φkAB
sumodd.o φkA¬2B
Assertion sumodd φ2A2kAB

Proof

Step Hyp Ref Expression
1 sumeven.a φAFin
2 sumeven.b φkAB
3 sumodd.o φkA¬2B
4 fveq2 x=x=
5 hash0 =0
6 4 5 eqtrdi x=x=0
7 6 breq2d x=2x20
8 sumeq1 x=kxB=kB
9 sum0 kB=0
10 8 9 eqtrdi x=kxB=0
11 10 breq2d x=2kxB20
12 7 11 bibi12d x=2x2kxB2020
13 fveq2 x=yx=y
14 13 breq2d x=y2x2y
15 sumeq1 x=ykxB=kyB
16 15 breq2d x=y2kxB2kyB
17 14 16 bibi12d x=y2x2kxB2y2kyB
18 fveq2 x=yzx=yz
19 18 breq2d x=yz2x2yz
20 sumeq1 x=yzkxB=kyzB
21 20 breq2d x=yz2kxB2kyzB
22 19 21 bibi12d x=yz2x2kxB2yz2kyzB
23 fveq2 x=Ax=A
24 23 breq2d x=A2x2A
25 sumeq1 x=AkxB=kAB
26 25 breq2d x=A2kxB2kAB
27 24 26 bibi12d x=A2x2kxB2A2kAB
28 biidd φ2020
29 eldifi zAyzA
30 29 adantl yAzAyzA
31 30 adantl φyAzAyzA
32 2 adantlr φyAzAykAB
33 32 ralrimiva φyAzAykAB
34 rspcsbela zAkABz/kB
35 31 33 34 syl2anc φyAzAyz/kB
36 3 ralrimiva φkA¬2B
37 nfcv _k2
38 nfcv _k
39 nfcsb1v _kz/kB
40 37 38 39 nfbr k2z/kB
41 40 nfn k¬2z/kB
42 csbeq1a k=zB=z/kB
43 42 breq2d k=z2B2z/kB
44 43 notbid k=z¬2B¬2z/kB
45 41 44 rspc zAkA¬2B¬2z/kB
46 29 45 syl zAykA¬2B¬2z/kB
47 36 46 syl5com φzAy¬2z/kB
48 47 a1d φyAzAy¬2z/kB
49 48 imp32 φyAzAy¬2z/kB
50 35 49 jca φyAzAyz/kB¬2z/kB
51 50 adantr φyAzAy2kyBz/kB¬2z/kB
52 ssfi AFinyAyFin
53 52 expcom yAAFinyFin
54 53 adantr yAzAyAFinyFin
55 1 54 syl5com φyAzAyyFin
56 55 imp φyAzAyyFin
57 simpll φyAzAykyφ
58 ssel yAkykA
59 58 adantr yAzAykykA
60 59 adantl φyAzAykykA
61 60 imp φyAzAykykA
62 57 61 2 syl2anc φyAzAykyB
63 56 62 fsumzcl φyAzAykyB
64 63 anim1i φyAzAy2kyBkyB2kyB
65 opeo z/kB¬2z/kBkyB2kyB¬2z/kB+kyB
66 51 64 65 syl2anc φyAzAy2kyB¬2z/kB+kyB
67 63 zcnd φyAzAykyB
68 35 zcnd φyAzAyz/kB
69 addcom kyBz/kBkyB+z/kB=z/kB+kyB
70 69 breq2d kyBz/kB2kyB+z/kB2z/kB+kyB
71 70 notbid kyBz/kB¬2kyB+z/kB¬2z/kB+kyB
72 67 68 71 syl2anc φyAzAy¬2kyB+z/kB¬2z/kB+kyB
73 72 adantr φyAzAy2kyB¬2kyB+z/kB¬2z/kB+kyB
74 66 73 mpbird φyAzAy2kyB¬2kyB+z/kB
75 74 ex φyAzAy2kyB¬2kyB+z/kB
76 63 anim1i φyAzAy¬2kyBkyB¬2kyB
77 50 adantr φyAzAy¬2kyBz/kB¬2z/kB
78 opoe kyB¬2kyBz/kB¬2z/kB2kyB+z/kB
79 76 77 78 syl2anc φyAzAy¬2kyB2kyB+z/kB
80 79 ex φyAzAy¬2kyB2kyB+z/kB
81 80 con1d φyAzAy¬2kyB+z/kB2kyB
82 75 81 impbid φyAzAy2kyB¬2kyB+z/kB
83 bitr3 2kyB¬2kyB+z/kB2kyB¬2y+1¬2kyB+z/kB¬2y+1
84 82 83 syl φyAzAy2kyB¬2y+1¬2kyB+z/kB¬2y+1
85 bicom ¬2y+12kyB2kyB¬2y+1
86 bicom ¬2y+1¬2kyB+z/kB¬2kyB+z/kB¬2y+1
87 84 85 86 3imtr4g φyAzAy¬2y+12kyB¬2y+1¬2kyB+z/kB
88 notnotb 2y¬¬2y
89 hashcl yFiny0
90 56 89 syl φyAzAyy0
91 90 nn0zd φyAzAyy
92 oddp1even y¬2y2y+1
93 91 92 syl φyAzAy¬2y2y+1
94 93 notbid φyAzAy¬¬2y¬2y+1
95 88 94 bitrid φyAzAy2y¬2y+1
96 95 bibi1d φyAzAy2y2kyB¬2y+12kyB
97 simprr φyAzAyzAy
98 eldifn zAy¬zy
99 98 adantl yAzAy¬zy
100 99 adantl φyAzAy¬zy
101 56 100 jca φyAzAyyFin¬zy
102 hashunsng zAyyFin¬zyyz=y+1
103 97 101 102 sylc φyAzAyyz=y+1
104 103 breq2d φyAzAy2yz2y+1
105 vex zV
106 105 a1i φyAzAyzV
107 df-nel zy¬zy
108 100 107 sylibr φyAzAyzy
109 simpll φyAzAykyzφ
110 elun kyzkykz
111 59 com12 kyyAzAykA
112 elsni kzk=z
113 eleq1w k=zkAzA
114 30 113 imbitrrid k=zyAzAykA
115 112 114 syl kzyAzAykA
116 111 115 jaoi kykzyAzAykA
117 110 116 sylbi kyzyAzAykA
118 117 com12 yAzAykyzkA
119 118 adantl φyAzAykyzkA
120 119 imp φyAzAykyzkA
121 109 120 2 syl2anc φyAzAykyzB
122 121 ralrimiva φyAzAykyzB
123 fsumsplitsnun yFinzVzykyzBkyzB=kyB+z/kB
124 56 106 108 122 123 syl121anc φyAzAykyzB=kyB+z/kB
125 124 breq2d φyAzAy2kyzB2kyB+z/kB
126 104 125 bibi12d φyAzAy2yz2kyzB2y+12kyB+z/kB
127 notbi 2y+12kyB+z/kB¬2y+1¬2kyB+z/kB
128 126 127 bitrdi φyAzAy2yz2kyzB¬2y+1¬2kyB+z/kB
129 87 96 128 3imtr4d φyAzAy2y2kyB2yz2kyzB
130 12 17 22 27 28 129 1 findcard2d φ2A2kAB