Metamath Proof Explorer


Theorem symgsssg

Description: The symmetric group has subgroups restricting the set of non-fixed points. (Contributed by Stefan O'Rear, 24-Aug-2015)

Ref Expression
Hypotheses symgsssg.g G=SymGrpD
symgsssg.b B=BaseG
Assertion symgsssg DVxB|domxIXSubGrpG

Proof

Step Hyp Ref Expression
1 symgsssg.g G=SymGrpD
2 symgsssg.b B=BaseG
3 eqidd DVG𝑠xB|domxIX=G𝑠xB|domxIX
4 eqidd DV0G=0G
5 eqidd DV+G=+G
6 ssrab2 xB|domxIXB
7 6 2 sseqtri xB|domxIXBaseG
8 7 a1i DVxB|domxIXBaseG
9 difeq1 x=0GxI=0GI
10 9 dmeqd x=0GdomxI=dom0GI
11 10 sseq1d x=0GdomxIXdom0GIX
12 1 symggrp DVGGrp
13 eqid 0G=0G
14 2 13 grpidcl GGrp0GB
15 12 14 syl DV0GB
16 1 symgid DVID=0G
17 16 difeq1d DVIDI=0GI
18 17 dmeqd DVdomIDI=dom0GI
19 resss IDI
20 ssdif0 IDIIDI=
21 19 20 mpbi IDI=
22 21 dmeqi domIDI=dom
23 dm0 dom=
24 22 23 eqtri domIDI=
25 0ss X
26 24 25 eqsstri domIDIX
27 18 26 eqsstrrdi DVdom0GIX
28 11 15 27 elrabd DV0GxB|domxIX
29 biid DVDV
30 difeq1 x=yxI=yI
31 30 dmeqd x=ydomxI=domyI
32 31 sseq1d x=ydomxIXdomyIX
33 32 elrab yxB|domxIXyBdomyIX
34 difeq1 x=zxI=zI
35 34 dmeqd x=zdomxI=domzI
36 35 sseq1d x=zdomxIXdomzIX
37 36 elrab zxB|domxIXzBdomzIX
38 difeq1 x=y+GzxI=y+GzI
39 38 dmeqd x=y+GzdomxI=domy+GzI
40 39 sseq1d x=y+GzdomxIXdomy+GzIX
41 12 3ad2ant1 DVyBdomyIXzBdomzIXGGrp
42 simp2l DVyBdomyIXzBdomzIXyB
43 simp3l DVyBdomyIXzBdomzIXzB
44 eqid +G=+G
45 2 44 grpcl GGrpyBzBy+GzB
46 41 42 43 45 syl3anc DVyBdomyIXzBdomzIXy+GzB
47 1 2 44 symgov yBzBy+Gz=yz
48 42 43 47 syl2anc DVyBdomyIXzBdomzIXy+Gz=yz
49 48 difeq1d DVyBdomyIXzBdomzIXy+GzI=yzI
50 49 dmeqd DVyBdomyIXzBdomzIXdomy+GzI=domyzI
51 mvdco domyzIdomyIdomzI
52 simp2r DVyBdomyIXzBdomzIXdomyIX
53 simp3r DVyBdomyIXzBdomzIXdomzIX
54 52 53 unssd DVyBdomyIXzBdomzIXdomyIdomzIX
55 51 54 sstrid DVyBdomyIXzBdomzIXdomyzIX
56 50 55 eqsstrd DVyBdomyIXzBdomzIXdomy+GzIX
57 40 46 56 elrabd DVyBdomyIXzBdomzIXy+GzxB|domxIX
58 29 33 37 57 syl3anb DVyxB|domxIXzxB|domxIXy+GzxB|domxIX
59 difeq1 x=invgGyxI=invgGyI
60 59 dmeqd x=invgGydomxI=dominvgGyI
61 60 sseq1d x=invgGydomxIXdominvgGyIX
62 simprl DVyBdomyIXyB
63 eqid invgG=invgG
64 2 63 grpinvcl GGrpyBinvgGyB
65 12 62 64 syl2an2r DVyBdomyIXinvgGyB
66 1 2 63 symginv yBinvgGy=y-1
67 66 ad2antrl DVyBdomyIXinvgGy=y-1
68 67 difeq1d DVyBdomyIXinvgGyI=y-1I
69 68 dmeqd DVyBdomyIXdominvgGyI=domy-1I
70 1 2 symgbasf1o yBy:D1-1 ontoD
71 70 ad2antrl DVyBdomyIXy:D1-1 ontoD
72 f1omvdcnv y:D1-1 ontoDdomy-1I=domyI
73 71 72 syl DVyBdomyIXdomy-1I=domyI
74 69 73 eqtrd DVyBdomyIXdominvgGyI=domyI
75 simprr DVyBdomyIXdomyIX
76 74 75 eqsstrd DVyBdomyIXdominvgGyIX
77 61 65 76 elrabd DVyBdomyIXinvgGyxB|domxIX
78 33 77 sylan2b DVyxB|domxIXinvgGyxB|domxIX
79 3 4 5 8 28 58 78 12 issubgrpd2 DVxB|domxIXSubGrpG