Metamath Proof Explorer


Theorem tanabsge

Description: The tangent function is greater than or equal to its argument in absolute value. (Contributed by Mario Carneiro, 25-Feb-2015)

Ref Expression
Assertion tanabsge Aπ2π2AtanA

Proof

Step Hyp Ref Expression
1 elioore Aπ2π2A
2 1 adantr Aπ2π2A<0A
3 2 renegcld Aπ2π2A<0A
4 1 lt0neg1d Aπ2π2A<00<A
5 4 biimpa Aπ2π2A<00<A
6 eliooord Aπ2π2π2<AA<π2
7 6 simpld Aπ2π2π2<A
8 7 adantr Aπ2π2A<0π2<A
9 halfpire π2
10 ltnegcon1 π2Aπ2<AA<π2
11 9 2 10 sylancr Aπ2π2A<0π2<AA<π2
12 8 11 mpbid Aπ2π2A<0A<π2
13 0xr 0*
14 9 rexri π2*
15 elioo2 0*π2*A0π2A0<AA<π2
16 13 14 15 mp2an A0π2A0<AA<π2
17 3 5 12 16 syl3anbrc Aπ2π2A<0A0π2
18 sincosq1sgn A0π20<sinA0<cosA
19 17 18 syl Aπ2π2A<00<sinA0<cosA
20 19 simprd Aπ2π2A<00<cosA
21 20 gt0ne0d Aπ2π2A<0cosA0
22 3 21 retancld Aπ2π2A<0tanA
23 tangtx A0π2A<tanA
24 17 23 syl Aπ2π2A<0A<tanA
25 3 22 24 ltled Aπ2π2A<0AtanA
26 0re 0
27 ltle A0A<0A0
28 1 26 27 sylancl Aπ2π2A<0A0
29 28 imp Aπ2π2A<0A0
30 2 29 absnidd Aπ2π2A<0A=A
31 1 recnd Aπ2π2A
32 31 adantr Aπ2π2A<0A
33 32 negnegd Aπ2π2A<0A=A
34 33 fveq2d Aπ2π2A<0tanA=tanA
35 32 negcld Aπ2π2A<0A
36 tanneg AcosA0tanA=tanA
37 35 21 36 syl2anc Aπ2π2A<0tanA=tanA
38 34 37 eqtr3d Aπ2π2A<0tanA=tanA
39 38 fveq2d Aπ2π2A<0tanA=tanA
40 22 recnd Aπ2π2A<0tanA
41 40 absnegd Aπ2π2A<0tanA=tanA
42 0red Aπ2π2A<00
43 ltle 0A0<A0A
44 26 3 43 sylancr Aπ2π2A<00<A0A
45 5 44 mpd Aπ2π2A<00A
46 42 3 22 45 25 letrd Aπ2π2A<00tanA
47 22 46 absidd Aπ2π2A<0tanA=tanA
48 39 41 47 3eqtrd Aπ2π2A<0tanA=tanA
49 25 30 48 3brtr4d Aπ2π2A<0AtanA
50 abs0 0=0
51 50 26 eqeltri 0
52 51 leidi 00
53 52 a1i Aπ2π2A=000
54 simpr Aπ2π2A=0A=0
55 54 fveq2d Aπ2π2A=0A=0
56 54 fveq2d Aπ2π2A=0tanA=tan0
57 tan0 tan0=0
58 56 57 eqtrdi Aπ2π2A=0tanA=0
59 58 fveq2d Aπ2π2A=0tanA=0
60 53 55 59 3brtr4d Aπ2π2A=0AtanA
61 1 adantr Aπ2π20<AA
62 simpr Aπ2π20<A0<A
63 6 simprd Aπ2π2A<π2
64 63 adantr Aπ2π20<AA<π2
65 elioo2 0*π2*A0π2A0<AA<π2
66 13 14 65 mp2an A0π2A0<AA<π2
67 61 62 64 66 syl3anbrc Aπ2π20<AA0π2
68 sincosq1sgn A0π20<sinA0<cosA
69 67 68 syl Aπ2π20<A0<sinA0<cosA
70 69 simprd Aπ2π20<A0<cosA
71 70 gt0ne0d Aπ2π20<AcosA0
72 61 71 retancld Aπ2π20<AtanA
73 tangtx A0π2A<tanA
74 67 73 syl Aπ2π20<AA<tanA
75 61 72 74 ltled Aπ2π20<AAtanA
76 ltle 0A0<A0A
77 26 1 76 sylancr Aπ2π20<A0A
78 77 imp Aπ2π20<A0A
79 61 78 absidd Aπ2π20<AA=A
80 0red Aπ2π20<A0
81 80 61 72 78 75 letrd Aπ2π20<A0tanA
82 72 81 absidd Aπ2π20<AtanA=tanA
83 75 79 82 3brtr4d Aπ2π20<AAtanA
84 lttri4 A0A<0A=00<A
85 1 26 84 sylancl Aπ2π2A<0A=00<A
86 49 60 83 85 mpjao3dan Aπ2π2AtanA