Metamath Proof Explorer


Theorem tworepnotupword

Description: Concatenation of identical singletons is never an increasing sequence. (Contributed by Ender Ting, 22-Nov-2024)

Ref Expression
Hypothesis tworepnotupword.1 AV
Assertion tworepnotupword Could not format assertion : No typesetting found for |- -. ( <" A "> ++ <" A "> ) e. UpWord S with typecode |-

Proof

Step Hyp Ref Expression
1 tworepnotupword.1 AV
2 ovex ⟨“A”⟩++⟨“A”⟩V
3 c0ex 0V
4 3 isseti kk=0
5 0z 0
6 ccat2s1len ⟨“A”⟩++⟨“A”⟩=2
7 6 oveq1i ⟨“A”⟩++⟨“A”⟩1=21
8 2m1e1 21=1
9 7 8 eqtri ⟨“A”⟩++⟨“A”⟩1=1
10 1z 1
11 9 10 eqeltri ⟨“A”⟩++⟨“A”⟩1
12 0lt1 0<1
13 12 9 breqtrri 0<⟨“A”⟩++⟨“A”⟩1
14 fzolb 00..^⟨“A”⟩++⟨“A”⟩10⟨“A”⟩++⟨“A”⟩10<⟨“A”⟩++⟨“A”⟩1
15 5 11 13 14 mpbir3an 00..^⟨“A”⟩++⟨“A”⟩1
16 eleq1a 00..^⟨“A”⟩++⟨“A”⟩1k=0k0..^⟨“A”⟩++⟨“A”⟩1
17 15 16 ax-mp k=0k0..^⟨“A”⟩++⟨“A”⟩1
18 fveq2 b=⟨“A”⟩++⟨“A”⟩b=⟨“A”⟩++⟨“A”⟩
19 18 oveq1d b=⟨“A”⟩++⟨“A”⟩b1=⟨“A”⟩++⟨“A”⟩1
20 19 oveq2d b=⟨“A”⟩++⟨“A”⟩0..^b1=0..^⟨“A”⟩++⟨“A”⟩1
21 20 eleq2d b=⟨“A”⟩++⟨“A”⟩k0..^b1k0..^⟨“A”⟩++⟨“A”⟩1
22 17 21 imbitrrid b=⟨“A”⟩++⟨“A”⟩k=0k0..^b1
23 et-ltneverrefl ¬A<A
24 fveq1 b=⟨“A”⟩++⟨“A”⟩b0=⟨“A”⟩++⟨“A”⟩0
25 ccat2s1p1 AV⟨“A”⟩++⟨“A”⟩0=A
26 1 25 ax-mp ⟨“A”⟩++⟨“A”⟩0=A
27 24 26 eqtrdi b=⟨“A”⟩++⟨“A”⟩b0=A
28 fveq1 b=⟨“A”⟩++⟨“A”⟩b0+1=⟨“A”⟩++⟨“A”⟩0+1
29 1e0p1 1=0+1
30 29 fveq2i ⟨“A”⟩++⟨“A”⟩1=⟨“A”⟩++⟨“A”⟩0+1
31 ccat2s1p2 AV⟨“A”⟩++⟨“A”⟩1=A
32 1 31 ax-mp ⟨“A”⟩++⟨“A”⟩1=A
33 30 32 eqtr3i ⟨“A”⟩++⟨“A”⟩0+1=A
34 28 33 eqtrdi b=⟨“A”⟩++⟨“A”⟩b0+1=A
35 27 34 breq12d b=⟨“A”⟩++⟨“A”⟩b0<b0+1A<A
36 23 35 mtbiri b=⟨“A”⟩++⟨“A”⟩¬b0<b0+1
37 fveq2 k=0bk=b0
38 fvoveq1 k=0bk+1=b0+1
39 37 38 breq12d k=0bk<bk+1b0<b0+1
40 39 biimpd k=0bk<bk+1b0<b0+1
41 40 con3d k=0¬b0<b0+1¬bk<bk+1
42 36 41 syl5com b=⟨“A”⟩++⟨“A”⟩k=0¬bk<bk+1
43 22 42 jcad b=⟨“A”⟩++⟨“A”⟩k=0k0..^b1¬bk<bk+1
44 43 eximdv b=⟨“A”⟩++⟨“A”⟩kk=0kk0..^b1¬bk<bk+1
45 4 44 mpi b=⟨“A”⟩++⟨“A”⟩kk0..^b1¬bk<bk+1
46 nfre1 kk0..^b1¬bk<bk+1
47 rspe k0..^b1¬bk<bk+1k0..^b1¬bk<bk+1
48 46 47 exlimi kk0..^b1¬bk<bk+1k0..^b1¬bk<bk+1
49 45 48 syl b=⟨“A”⟩++⟨“A”⟩k0..^b1¬bk<bk+1
50 rexnal k0..^b1¬bk<bk+1¬k0..^b1bk<bk+1
51 49 50 sylib b=⟨“A”⟩++⟨“A”⟩¬k0..^b1bk<bk+1
52 df-upword Could not format UpWord S = { b | ( b e. Word S /\ A. k e. ( 0 ..^ ( ( # ` b ) - 1 ) ) ( b ` k ) < ( b ` ( k + 1 ) ) ) } : No typesetting found for |- UpWord S = { b | ( b e. Word S /\ A. k e. ( 0 ..^ ( ( # ` b ) - 1 ) ) ( b ` k ) < ( b ` ( k + 1 ) ) ) } with typecode |-
53 52 eqabri Could not format ( b e. UpWord S <-> ( b e. Word S /\ A. k e. ( 0 ..^ ( ( # ` b ) - 1 ) ) ( b ` k ) < ( b ` ( k + 1 ) ) ) ) : No typesetting found for |- ( b e. UpWord S <-> ( b e. Word S /\ A. k e. ( 0 ..^ ( ( # ` b ) - 1 ) ) ( b ` k ) < ( b ` ( k + 1 ) ) ) ) with typecode |-
54 53 simprbi Could not format ( b e. UpWord S -> A. k e. ( 0 ..^ ( ( # ` b ) - 1 ) ) ( b ` k ) < ( b ` ( k + 1 ) ) ) : No typesetting found for |- ( b e. UpWord S -> A. k e. ( 0 ..^ ( ( # ` b ) - 1 ) ) ( b ` k ) < ( b ` ( k + 1 ) ) ) with typecode |-
55 51 54 nsyl Could not format ( b = ( <" A "> ++ <" A "> ) -> -. b e. UpWord S ) : No typesetting found for |- ( b = ( <" A "> ++ <" A "> ) -> -. b e. UpWord S ) with typecode |-
56 eleq1 Could not format ( b = ( <" A "> ++ <" A "> ) -> ( b e. UpWord S <-> ( <" A "> ++ <" A "> ) e. UpWord S ) ) : No typesetting found for |- ( b = ( <" A "> ++ <" A "> ) -> ( b e. UpWord S <-> ( <" A "> ++ <" A "> ) e. UpWord S ) ) with typecode |-
57 55 56 mtbid Could not format ( b = ( <" A "> ++ <" A "> ) -> -. ( <" A "> ++ <" A "> ) e. UpWord S ) : No typesetting found for |- ( b = ( <" A "> ++ <" A "> ) -> -. ( <" A "> ++ <" A "> ) e. UpWord S ) with typecode |-
58 2 57 vtocle Could not format -. ( <" A "> ++ <" A "> ) e. UpWord S : No typesetting found for |- -. ( <" A "> ++ <" A "> ) e. UpWord S with typecode |-