Metamath Proof Explorer


Theorem txhaus

Description: The topological product of two Hausdorff spaces is Hausdorff. (Contributed by Mario Carneiro, 23-Mar-2015)

Ref Expression
Assertion txhaus RHausSHausR×tSHaus

Proof

Step Hyp Ref Expression
1 haustop RHausRTop
2 haustop SHausSTop
3 txtop RTopSTopR×tSTop
4 1 2 3 syl2an RHausSHausR×tSTop
5 eqid R=R
6 eqid S=S
7 5 6 txuni RTopSTopR×S=R×tS
8 1 2 7 syl2an RHausSHausR×S=R×tS
9 8 eleq2d RHausSHausxR×SxR×tS
10 8 eleq2d RHausSHausyR×SyR×tS
11 9 10 anbi12d RHausSHausxR×SyR×SxR×tSyR×tS
12 neorian 1stx1sty2ndx2ndy¬1stx=1sty2ndx=2ndy
13 xpopth xR×SyR×S1stx=1sty2ndx=2ndyx=y
14 13 adantl RHausSHausxR×SyR×S1stx=1sty2ndx=2ndyx=y
15 14 necon3bbid RHausSHausxR×SyR×S¬1stx=1sty2ndx=2ndyxy
16 12 15 bitrid RHausSHausxR×SyR×S1stx1sty2ndx2ndyxy
17 simplll RHausSHausxR×SyR×S1stx1styRHaus
18 xp1st xR×S1stxR
19 18 ad2antrl RHausSHausxR×SyR×S1stxR
20 19 adantr RHausSHausxR×SyR×S1stx1sty1stxR
21 xp1st yR×S1styR
22 21 ad2antll RHausSHausxR×SyR×S1styR
23 22 adantr RHausSHausxR×SyR×S1stx1sty1styR
24 simpr RHausSHausxR×SyR×S1stx1sty1stx1sty
25 5 hausnei RHaus1stxR1styR1stx1styuRvR1stxu1styvuv=
26 17 20 23 24 25 syl13anc RHausSHausxR×SyR×S1stx1styuRvR1stxu1styvuv=
27 1 ad2antrr RHausSHausxR×SyR×SRTop
28 27 ad2antrr RHausSHausxR×SyR×S1stx1styuRvR1stxu1styvuv=RTop
29 2 ad4antlr RHausSHausxR×SyR×S1stx1styuRvR1stxu1styvuv=STop
30 simprll RHausSHausxR×SyR×S1stx1styuRvR1stxu1styvuv=uR
31 6 topopn STopSS
32 29 31 syl RHausSHausxR×SyR×S1stx1styuRvR1stxu1styvuv=SS
33 txopn RTopSTopuRSSu×SR×tS
34 28 29 30 32 33 syl22anc RHausSHausxR×SyR×S1stx1styuRvR1stxu1styvuv=u×SR×tS
35 simprlr RHausSHausxR×SyR×S1stx1styuRvR1stxu1styvuv=vR
36 txopn RTopSTopvRSSv×SR×tS
37 28 29 35 32 36 syl22anc RHausSHausxR×SyR×S1stx1styuRvR1stxu1styvuv=v×SR×tS
38 1st2nd2 xR×Sx=1stx2ndx
39 38 ad2antrl RHausSHausxR×SyR×Sx=1stx2ndx
40 39 ad2antrr RHausSHausxR×SyR×S1stx1styuRvR1stxu1styvuv=x=1stx2ndx
41 simprr1 RHausSHausxR×SyR×S1stx1styuRvR1stxu1styvuv=1stxu
42 xp2nd xR×S2ndxS
43 42 ad2antrl RHausSHausxR×SyR×S2ndxS
44 43 ad2antrr RHausSHausxR×SyR×S1stx1styuRvR1stxu1styvuv=2ndxS
45 41 44 jca RHausSHausxR×SyR×S1stx1styuRvR1stxu1styvuv=1stxu2ndxS
46 elxp6 xu×Sx=1stx2ndx1stxu2ndxS
47 40 45 46 sylanbrc RHausSHausxR×SyR×S1stx1styuRvR1stxu1styvuv=xu×S
48 1st2nd2 yR×Sy=1sty2ndy
49 48 ad2antll RHausSHausxR×SyR×Sy=1sty2ndy
50 49 ad2antrr RHausSHausxR×SyR×S1stx1styuRvR1stxu1styvuv=y=1sty2ndy
51 simprr2 RHausSHausxR×SyR×S1stx1styuRvR1stxu1styvuv=1styv
52 xp2nd yR×S2ndyS
53 52 ad2antll RHausSHausxR×SyR×S2ndyS
54 53 ad2antrr RHausSHausxR×SyR×S1stx1styuRvR1stxu1styvuv=2ndyS
55 51 54 jca RHausSHausxR×SyR×S1stx1styuRvR1stxu1styvuv=1styv2ndyS
56 elxp6 yv×Sy=1sty2ndy1styv2ndyS
57 50 55 56 sylanbrc RHausSHausxR×SyR×S1stx1styuRvR1stxu1styvuv=yv×S
58 simprr3 RHausSHausxR×SyR×S1stx1styuRvR1stxu1styvuv=uv=
59 58 xpeq1d RHausSHausxR×SyR×S1stx1styuRvR1stxu1styvuv=uv×S=×S
60 xpindir uv×S=u×Sv×S
61 0xp ×S=
62 59 60 61 3eqtr3g RHausSHausxR×SyR×S1stx1styuRvR1stxu1styvuv=u×Sv×S=
63 eleq2 z=u×Sxzxu×S
64 ineq1 z=u×Szw=u×Sw
65 64 eqeq1d z=u×Szw=u×Sw=
66 63 65 3anbi13d z=u×Sxzywzw=xu×Sywu×Sw=
67 eleq2 w=v×Sywyv×S
68 ineq2 w=v×Su×Sw=u×Sv×S
69 68 eqeq1d w=v×Su×Sw=u×Sv×S=
70 67 69 3anbi23d w=v×Sxu×Sywu×Sw=xu×Syv×Su×Sv×S=
71 66 70 rspc2ev u×SR×tSv×SR×tSxu×Syv×Su×Sv×S=zR×tSwR×tSxzywzw=
72 34 37 47 57 62 71 syl113anc RHausSHausxR×SyR×S1stx1styuRvR1stxu1styvuv=zR×tSwR×tSxzywzw=
73 72 expr RHausSHausxR×SyR×S1stx1styuRvR1stxu1styvuv=zR×tSwR×tSxzywzw=
74 73 rexlimdvva RHausSHausxR×SyR×S1stx1styuRvR1stxu1styvuv=zR×tSwR×tSxzywzw=
75 26 74 mpd RHausSHausxR×SyR×S1stx1styzR×tSwR×tSxzywzw=
76 simpllr RHausSHausxR×SyR×S2ndx2ndySHaus
77 43 adantr RHausSHausxR×SyR×S2ndx2ndy2ndxS
78 53 adantr RHausSHausxR×SyR×S2ndx2ndy2ndyS
79 simpr RHausSHausxR×SyR×S2ndx2ndy2ndx2ndy
80 6 hausnei SHaus2ndxS2ndyS2ndx2ndyuSvS2ndxu2ndyvuv=
81 76 77 78 79 80 syl13anc RHausSHausxR×SyR×S2ndx2ndyuSvS2ndxu2ndyvuv=
82 27 ad2antrr RHausSHausxR×SyR×S2ndx2ndyuSvS2ndxu2ndyvuv=RTop
83 2 ad4antlr RHausSHausxR×SyR×S2ndx2ndyuSvS2ndxu2ndyvuv=STop
84 5 topopn RTopRR
85 82 84 syl RHausSHausxR×SyR×S2ndx2ndyuSvS2ndxu2ndyvuv=RR
86 simprll RHausSHausxR×SyR×S2ndx2ndyuSvS2ndxu2ndyvuv=uS
87 txopn RTopSTopRRuSR×uR×tS
88 82 83 85 86 87 syl22anc RHausSHausxR×SyR×S2ndx2ndyuSvS2ndxu2ndyvuv=R×uR×tS
89 simprlr RHausSHausxR×SyR×S2ndx2ndyuSvS2ndxu2ndyvuv=vS
90 txopn RTopSTopRRvSR×vR×tS
91 82 83 85 89 90 syl22anc RHausSHausxR×SyR×S2ndx2ndyuSvS2ndxu2ndyvuv=R×vR×tS
92 39 ad2antrr RHausSHausxR×SyR×S2ndx2ndyuSvS2ndxu2ndyvuv=x=1stx2ndx
93 19 ad2antrr RHausSHausxR×SyR×S2ndx2ndyuSvS2ndxu2ndyvuv=1stxR
94 simprr1 RHausSHausxR×SyR×S2ndx2ndyuSvS2ndxu2ndyvuv=2ndxu
95 93 94 jca RHausSHausxR×SyR×S2ndx2ndyuSvS2ndxu2ndyvuv=1stxR2ndxu
96 elxp6 xR×ux=1stx2ndx1stxR2ndxu
97 92 95 96 sylanbrc RHausSHausxR×SyR×S2ndx2ndyuSvS2ndxu2ndyvuv=xR×u
98 49 ad2antrr RHausSHausxR×SyR×S2ndx2ndyuSvS2ndxu2ndyvuv=y=1sty2ndy
99 22 ad2antrr RHausSHausxR×SyR×S2ndx2ndyuSvS2ndxu2ndyvuv=1styR
100 simprr2 RHausSHausxR×SyR×S2ndx2ndyuSvS2ndxu2ndyvuv=2ndyv
101 99 100 jca RHausSHausxR×SyR×S2ndx2ndyuSvS2ndxu2ndyvuv=1styR2ndyv
102 elxp6 yR×vy=1sty2ndy1styR2ndyv
103 98 101 102 sylanbrc RHausSHausxR×SyR×S2ndx2ndyuSvS2ndxu2ndyvuv=yR×v
104 simprr3 RHausSHausxR×SyR×S2ndx2ndyuSvS2ndxu2ndyvuv=uv=
105 104 xpeq2d RHausSHausxR×SyR×S2ndx2ndyuSvS2ndxu2ndyvuv=R×uv=R×
106 xpindi R×uv=R×uR×v
107 xp0 R×=
108 105 106 107 3eqtr3g RHausSHausxR×SyR×S2ndx2ndyuSvS2ndxu2ndyvuv=R×uR×v=
109 eleq2 z=R×uxzxR×u
110 ineq1 z=R×uzw=R×uw
111 110 eqeq1d z=R×uzw=R×uw=
112 109 111 3anbi13d z=R×uxzywzw=xR×uywR×uw=
113 eleq2 w=R×vywyR×v
114 ineq2 w=R×vR×uw=R×uR×v
115 114 eqeq1d w=R×vR×uw=R×uR×v=
116 113 115 3anbi23d w=R×vxR×uywR×uw=xR×uyR×vR×uR×v=
117 112 116 rspc2ev R×uR×tSR×vR×tSxR×uyR×vR×uR×v=zR×tSwR×tSxzywzw=
118 88 91 97 103 108 117 syl113anc RHausSHausxR×SyR×S2ndx2ndyuSvS2ndxu2ndyvuv=zR×tSwR×tSxzywzw=
119 118 expr RHausSHausxR×SyR×S2ndx2ndyuSvS2ndxu2ndyvuv=zR×tSwR×tSxzywzw=
120 119 rexlimdvva RHausSHausxR×SyR×S2ndx2ndyuSvS2ndxu2ndyvuv=zR×tSwR×tSxzywzw=
121 81 120 mpd RHausSHausxR×SyR×S2ndx2ndyzR×tSwR×tSxzywzw=
122 75 121 jaodan RHausSHausxR×SyR×S1stx1sty2ndx2ndyzR×tSwR×tSxzywzw=
123 122 ex RHausSHausxR×SyR×S1stx1sty2ndx2ndyzR×tSwR×tSxzywzw=
124 16 123 sylbird RHausSHausxR×SyR×SxyzR×tSwR×tSxzywzw=
125 124 ex RHausSHausxR×SyR×SxyzR×tSwR×tSxzywzw=
126 11 125 sylbird RHausSHausxR×tSyR×tSxyzR×tSwR×tSxzywzw=
127 126 ralrimivv RHausSHausxR×tSyR×tSxyzR×tSwR×tSxzywzw=
128 eqid R×tS=R×tS
129 128 ishaus R×tSHausR×tSTopxR×tSyR×tSxyzR×tSwR×tSxzywzw=
130 4 127 129 sylanbrc RHausSHausR×tSHaus