Step |
Hyp |
Ref |
Expression |
1 |
|
ucncn.j |
|
2 |
|
ucncn.k |
|
3 |
|
ucncn.1 |
|
4 |
|
ucncn.2 |
|
5 |
|
ucncn.3 |
|
6 |
|
ucncn.4 |
|
7 |
|
ucncn.5 |
|
8 |
|
eqid |
|
9 |
|
eqid |
|
10 |
8 9 1
|
isusp |
|
11 |
10
|
simplbi |
|
12 |
3 11
|
syl |
|
13 |
|
eqid |
|
14 |
|
eqid |
|
15 |
13 14 2
|
isusp |
|
16 |
15
|
simplbi |
|
17 |
4 16
|
syl |
|
18 |
|
isucn |
|
19 |
12 17 18
|
syl2anc |
|
20 |
7 19
|
mpbid |
|
21 |
20
|
simpld |
|
22 |
|
cnvimass |
|
23 |
21
|
fdmd |
|
24 |
23
|
adantr |
|
25 |
22 24
|
sseqtrid |
|
26 |
|
simplll |
|
27 |
|
simpr |
|
28 |
25
|
ad2antrr |
|
29 |
|
simplr |
|
30 |
28 29
|
sseldd |
|
31 |
20
|
simprd |
|
32 |
31
|
r19.21bi |
|
33 |
|
r19.12 |
|
34 |
32 33
|
syl |
|
35 |
34
|
r19.21bi |
|
36 |
26 27 30 35
|
syl21anc |
|
37 |
36
|
adantr |
|
38 |
26
|
ad3antrrr |
|
39 |
12
|
ad5antr |
|
40 |
|
simpr |
|
41 |
|
ustrel |
|
42 |
39 40 41
|
syl2anc |
|
43 |
42
|
adantr |
|
44 |
38 12
|
syl |
|
45 |
|
simplr |
|
46 |
30
|
ad3antrrr |
|
47 |
|
ustimasn |
|
48 |
44 45 46 47
|
syl3anc |
|
49 |
|
simpr |
|
50 |
|
simplr |
|
51 |
|
simpllr |
|
52 |
17
|
ad5antr |
|
53 |
|
simpllr |
|
54 |
|
ustrel |
|
55 |
52 53 54
|
syl2anc |
|
56 |
|
elrelimasn |
|
57 |
55 56
|
syl |
|
58 |
57
|
biimpar |
|
59 |
51 58
|
sseldd |
|
60 |
59
|
adantlr |
|
61 |
|
ffn |
|
62 |
|
elpreima |
|
63 |
21 61 62
|
3syl |
|
64 |
63
|
ad7antr |
|
65 |
50 60 64
|
mpbir2and |
|
66 |
65
|
ex |
|
67 |
66
|
ralrimiva |
|
68 |
67
|
adantr |
|
69 |
|
r19.26 |
|
70 |
|
pm3.33 |
|
71 |
70
|
ralimi |
|
72 |
69 71
|
sylbir |
|
73 |
49 68 72
|
syl2anc |
|
74 |
|
simpl2l |
|
75 |
|
simpr |
|
76 |
|
elrelimasn |
|
77 |
76
|
biimpa |
|
78 |
74 75 77
|
syl2anc |
|
79 |
|
breq2 |
|
80 |
|
eleq1w |
|
81 |
79 80
|
imbi12d |
|
82 |
|
simpl3 |
|
83 |
|
simpl2r |
|
84 |
83 75
|
sseldd |
|
85 |
81 82 84
|
rspcdva |
|
86 |
78 85
|
mpd |
|
87 |
86
|
ex |
|
88 |
87
|
ssrdv |
|
89 |
38 43 48 73 88
|
syl121anc |
|
90 |
89
|
ex |
|
91 |
90
|
reximdva |
|
92 |
37 91
|
mpd |
|
93 |
|
sneq |
|
94 |
93
|
imaeq2d |
|
95 |
94
|
sseq1d |
|
96 |
95
|
rexbidv |
|
97 |
|
simpr |
|
98 |
15
|
simprbi |
|
99 |
4 98
|
syl |
|
100 |
99
|
adantr |
|
101 |
97 100
|
eleqtrd |
|
102 |
|
elutop |
|
103 |
17 102
|
syl |
|
104 |
103
|
adantr |
|
105 |
101 104
|
mpbid |
|
106 |
105
|
simprd |
|
107 |
106
|
adantr |
|
108 |
|
elpreima |
|
109 |
21 61 108
|
3syl |
|
110 |
109
|
adantr |
|
111 |
110
|
biimpa |
|
112 |
111
|
simprd |
|
113 |
96 107 112
|
rspcdva |
|
114 |
92 113
|
r19.29a |
|
115 |
114
|
ralrimiva |
|
116 |
10
|
simprbi |
|
117 |
3 116
|
syl |
|
118 |
117
|
adantr |
|
119 |
118
|
eleq2d |
|
120 |
|
elutop |
|
121 |
12 120
|
syl |
|
122 |
121
|
adantr |
|
123 |
119 122
|
bitrd |
|
124 |
25 115 123
|
mpbir2and |
|
125 |
124
|
ralrimiva |
|
126 |
8 1
|
istps |
|
127 |
5 126
|
sylib |
|
128 |
13 2
|
istps |
|
129 |
6 128
|
sylib |
|
130 |
|
iscn |
|
131 |
127 129 130
|
syl2anc |
|
132 |
21 125 131
|
mpbir2and |
|