Metamath Proof Explorer


Theorem ucncn

Description: Uniform continuity implies continuity. Deduction form. Proposition 1 of BourbakiTop1 p. II.6. (Contributed by Thierry Arnoux, 30-Nov-2017)

Ref Expression
Hypotheses ucncn.j J = TopOpen R
ucncn.k K = TopOpen S
ucncn.1 φ R UnifSp
ucncn.2 φ S UnifSp
ucncn.3 φ R TopSp
ucncn.4 φ S TopSp
ucncn.5 φ F UnifSt R uCn UnifSt S
Assertion ucncn φ F J Cn K

Proof

Step Hyp Ref Expression
1 ucncn.j J = TopOpen R
2 ucncn.k K = TopOpen S
3 ucncn.1 φ R UnifSp
4 ucncn.2 φ S UnifSp
5 ucncn.3 φ R TopSp
6 ucncn.4 φ S TopSp
7 ucncn.5 φ F UnifSt R uCn UnifSt S
8 eqid Base R = Base R
9 eqid UnifSt R = UnifSt R
10 8 9 1 isusp R UnifSp UnifSt R UnifOn Base R J = unifTop UnifSt R
11 10 simplbi R UnifSp UnifSt R UnifOn Base R
12 3 11 syl φ UnifSt R UnifOn Base R
13 eqid Base S = Base S
14 eqid UnifSt S = UnifSt S
15 13 14 2 isusp S UnifSp UnifSt S UnifOn Base S K = unifTop UnifSt S
16 15 simplbi S UnifSp UnifSt S UnifOn Base S
17 4 16 syl φ UnifSt S UnifOn Base S
18 isucn UnifSt R UnifOn Base R UnifSt S UnifOn Base S F UnifSt R uCn UnifSt S F : Base R Base S s UnifSt S r UnifSt R x Base R z Base R x r z F x s F z
19 12 17 18 syl2anc φ F UnifSt R uCn UnifSt S F : Base R Base S s UnifSt S r UnifSt R x Base R z Base R x r z F x s F z
20 7 19 mpbid φ F : Base R Base S s UnifSt S r UnifSt R x Base R z Base R x r z F x s F z
21 20 simpld φ F : Base R Base S
22 cnvimass F -1 a dom F
23 21 fdmd φ dom F = Base R
24 23 adantr φ a K dom F = Base R
25 22 24 sseqtrid φ a K F -1 a Base R
26 simplll φ a K x F -1 a s UnifSt S φ
27 simpr φ a K x F -1 a s UnifSt S s UnifSt S
28 25 ad2antrr φ a K x F -1 a s UnifSt S F -1 a Base R
29 simplr φ a K x F -1 a s UnifSt S x F -1 a
30 28 29 sseldd φ a K x F -1 a s UnifSt S x Base R
31 20 simprd φ s UnifSt S r UnifSt R x Base R z Base R x r z F x s F z
32 31 r19.21bi φ s UnifSt S r UnifSt R x Base R z Base R x r z F x s F z
33 r19.12 r UnifSt R x Base R z Base R x r z F x s F z x Base R r UnifSt R z Base R x r z F x s F z
34 32 33 syl φ s UnifSt S x Base R r UnifSt R z Base R x r z F x s F z
35 34 r19.21bi φ s UnifSt S x Base R r UnifSt R z Base R x r z F x s F z
36 26 27 30 35 syl21anc φ a K x F -1 a s UnifSt S r UnifSt R z Base R x r z F x s F z
37 36 adantr φ a K x F -1 a s UnifSt S s F x a r UnifSt R z Base R x r z F x s F z
38 26 ad3antrrr φ a K x F -1 a s UnifSt S s F x a r UnifSt R z Base R x r z F x s F z φ
39 12 ad5antr φ a K x F -1 a s UnifSt S s F x a r UnifSt R UnifSt R UnifOn Base R
40 simpr φ a K x F -1 a s UnifSt S s F x a r UnifSt R r UnifSt R
41 ustrel UnifSt R UnifOn Base R r UnifSt R Rel r
42 39 40 41 syl2anc φ a K x F -1 a s UnifSt S s F x a r UnifSt R Rel r
43 42 adantr φ a K x F -1 a s UnifSt S s F x a r UnifSt R z Base R x r z F x s F z Rel r
44 38 12 syl φ a K x F -1 a s UnifSt S s F x a r UnifSt R z Base R x r z F x s F z UnifSt R UnifOn Base R
45 simplr φ a K x F -1 a s UnifSt S s F x a r UnifSt R z Base R x r z F x s F z r UnifSt R
46 30 ad3antrrr φ a K x F -1 a s UnifSt S s F x a r UnifSt R z Base R x r z F x s F z x Base R
47 ustimasn UnifSt R UnifOn Base R r UnifSt R x Base R r x Base R
48 44 45 46 47 syl3anc φ a K x F -1 a s UnifSt S s F x a r UnifSt R z Base R x r z F x s F z r x Base R
49 simpr φ a K x F -1 a s UnifSt S s F x a r UnifSt R z Base R x r z F x s F z z Base R x r z F x s F z
50 simplr φ a K x F -1 a s UnifSt S s F x a r UnifSt R z Base R F x s F z z Base R
51 simpllr φ a K x F -1 a s UnifSt S s F x a r UnifSt R F x s F z s F x a
52 17 ad5antr φ a K x F -1 a s UnifSt S s F x a r UnifSt R UnifSt S UnifOn Base S
53 simpllr φ a K x F -1 a s UnifSt S s F x a r UnifSt R s UnifSt S
54 ustrel UnifSt S UnifOn Base S s UnifSt S Rel s
55 52 53 54 syl2anc φ a K x F -1 a s UnifSt S s F x a r UnifSt R Rel s
56 elrelimasn Rel s F z s F x F x s F z
57 55 56 syl φ a K x F -1 a s UnifSt S s F x a r UnifSt R F z s F x F x s F z
58 57 biimpar φ a K x F -1 a s UnifSt S s F x a r UnifSt R F x s F z F z s F x
59 51 58 sseldd φ a K x F -1 a s UnifSt S s F x a r UnifSt R F x s F z F z a
60 59 adantlr φ a K x F -1 a s UnifSt S s F x a r UnifSt R z Base R F x s F z F z a
61 ffn F : Base R Base S F Fn Base R
62 elpreima F Fn Base R z F -1 a z Base R F z a
63 21 61 62 3syl φ z F -1 a z Base R F z a
64 63 ad7antr φ a K x F -1 a s UnifSt S s F x a r UnifSt R z Base R F x s F z z F -1 a z Base R F z a
65 50 60 64 mpbir2and φ a K x F -1 a s UnifSt S s F x a r UnifSt R z Base R F x s F z z F -1 a
66 65 ex φ a K x F -1 a s UnifSt S s F x a r UnifSt R z Base R F x s F z z F -1 a
67 66 ralrimiva φ a K x F -1 a s UnifSt S s F x a r UnifSt R z Base R F x s F z z F -1 a
68 67 adantr φ a K x F -1 a s UnifSt S s F x a r UnifSt R z Base R x r z F x s F z z Base R F x s F z z F -1 a
69 r19.26 z Base R x r z F x s F z F x s F z z F -1 a z Base R x r z F x s F z z Base R F x s F z z F -1 a
70 pm3.33 x r z F x s F z F x s F z z F -1 a x r z z F -1 a
71 70 ralimi z Base R x r z F x s F z F x s F z z F -1 a z Base R x r z z F -1 a
72 69 71 sylbir z Base R x r z F x s F z z Base R F x s F z z F -1 a z Base R x r z z F -1 a
73 49 68 72 syl2anc φ a K x F -1 a s UnifSt S s F x a r UnifSt R z Base R x r z F x s F z z Base R x r z z F -1 a
74 simpl2l φ Rel r r x Base R z Base R x r z z F -1 a y r x Rel r
75 simpr φ Rel r r x Base R z Base R x r z z F -1 a y r x y r x
76 elrelimasn Rel r y r x x r y
77 76 biimpa Rel r y r x x r y
78 74 75 77 syl2anc φ Rel r r x Base R z Base R x r z z F -1 a y r x x r y
79 breq2 z = y x r z x r y
80 eleq1w z = y z F -1 a y F -1 a
81 79 80 imbi12d z = y x r z z F -1 a x r y y F -1 a
82 simpl3 φ Rel r r x Base R z Base R x r z z F -1 a y r x z Base R x r z z F -1 a
83 simpl2r φ Rel r r x Base R z Base R x r z z F -1 a y r x r x Base R
84 83 75 sseldd φ Rel r r x Base R z Base R x r z z F -1 a y r x y Base R
85 81 82 84 rspcdva φ Rel r r x Base R z Base R x r z z F -1 a y r x x r y y F -1 a
86 78 85 mpd φ Rel r r x Base R z Base R x r z z F -1 a y r x y F -1 a
87 86 ex φ Rel r r x Base R z Base R x r z z F -1 a y r x y F -1 a
88 87 ssrdv φ Rel r r x Base R z Base R x r z z F -1 a r x F -1 a
89 38 43 48 73 88 syl121anc φ a K x F -1 a s UnifSt S s F x a r UnifSt R z Base R x r z F x s F z r x F -1 a
90 89 ex φ a K x F -1 a s UnifSt S s F x a r UnifSt R z Base R x r z F x s F z r x F -1 a
91 90 reximdva φ a K x F -1 a s UnifSt S s F x a r UnifSt R z Base R x r z F x s F z r UnifSt R r x F -1 a
92 37 91 mpd φ a K x F -1 a s UnifSt S s F x a r UnifSt R r x F -1 a
93 sneq y = F x y = F x
94 93 imaeq2d y = F x s y = s F x
95 94 sseq1d y = F x s y a s F x a
96 95 rexbidv y = F x s UnifSt S s y a s UnifSt S s F x a
97 simpr φ a K a K
98 15 simprbi S UnifSp K = unifTop UnifSt S
99 4 98 syl φ K = unifTop UnifSt S
100 99 adantr φ a K K = unifTop UnifSt S
101 97 100 eleqtrd φ a K a unifTop UnifSt S
102 elutop UnifSt S UnifOn Base S a unifTop UnifSt S a Base S y a s UnifSt S s y a
103 17 102 syl φ a unifTop UnifSt S a Base S y a s UnifSt S s y a
104 103 adantr φ a K a unifTop UnifSt S a Base S y a s UnifSt S s y a
105 101 104 mpbid φ a K a Base S y a s UnifSt S s y a
106 105 simprd φ a K y a s UnifSt S s y a
107 106 adantr φ a K x F -1 a y a s UnifSt S s y a
108 elpreima F Fn Base R x F -1 a x Base R F x a
109 21 61 108 3syl φ x F -1 a x Base R F x a
110 109 adantr φ a K x F -1 a x Base R F x a
111 110 biimpa φ a K x F -1 a x Base R F x a
112 111 simprd φ a K x F -1 a F x a
113 96 107 112 rspcdva φ a K x F -1 a s UnifSt S s F x a
114 92 113 r19.29a φ a K x F -1 a r UnifSt R r x F -1 a
115 114 ralrimiva φ a K x F -1 a r UnifSt R r x F -1 a
116 10 simprbi R UnifSp J = unifTop UnifSt R
117 3 116 syl φ J = unifTop UnifSt R
118 117 adantr φ a K J = unifTop UnifSt R
119 118 eleq2d φ a K F -1 a J F -1 a unifTop UnifSt R
120 elutop UnifSt R UnifOn Base R F -1 a unifTop UnifSt R F -1 a Base R x F -1 a r UnifSt R r x F -1 a
121 12 120 syl φ F -1 a unifTop UnifSt R F -1 a Base R x F -1 a r UnifSt R r x F -1 a
122 121 adantr φ a K F -1 a unifTop UnifSt R F -1 a Base R x F -1 a r UnifSt R r x F -1 a
123 119 122 bitrd φ a K F -1 a J F -1 a Base R x F -1 a r UnifSt R r x F -1 a
124 25 115 123 mpbir2and φ a K F -1 a J
125 124 ralrimiva φ a K F -1 a J
126 8 1 istps R TopSp J TopOn Base R
127 5 126 sylib φ J TopOn Base R
128 13 2 istps S TopSp K TopOn Base S
129 6 128 sylib φ K TopOn Base S
130 iscn J TopOn Base R K TopOn Base S F J Cn K F : Base R Base S a K F -1 a J
131 127 129 130 syl2anc φ F J Cn K F : Base R Base S a K F -1 a J
132 21 125 131 mpbir2and φ F J Cn K