Metamath Proof Explorer


Theorem ulmss

Description: A uniform limit of functions is still a uniform limit if restricted to a subset. (Contributed by Mario Carneiro, 3-Mar-2015)

Ref Expression
Hypotheses ulmss.z Z = M
ulmss.t φ T S
ulmss.a φ x Z A W
ulmss.u φ x Z A u S G
Assertion ulmss φ x Z A T u T G T

Proof

Step Hyp Ref Expression
1 ulmss.z Z = M
2 ulmss.t φ T S
3 ulmss.a φ x Z A W
4 ulmss.u φ x Z A u S G
5 1 uztrn2 j Z k j k Z
6 2 adantr φ k Z T S
7 ssralv T S z S x Z A k z G z < r z T x Z A k z G z < r
8 6 7 syl φ k Z z S x Z A k z G z < r z T x Z A k z G z < r
9 fvres z T A T z = A z
10 9 ad2antll φ x Z z T A T z = A z
11 simprl φ x Z z T x Z
12 3 adantrr φ x Z z T A W
13 resexg A W A T V
14 12 13 syl φ x Z z T A T V
15 eqid x Z A T = x Z A T
16 15 fvmpt2 x Z A T V x Z A T x = A T
17 11 14 16 syl2anc φ x Z z T x Z A T x = A T
18 17 fveq1d φ x Z z T x Z A T x z = A T z
19 eqid x Z A = x Z A
20 19 fvmpt2 x Z A W x Z A x = A
21 11 12 20 syl2anc φ x Z z T x Z A x = A
22 21 fveq1d φ x Z z T x Z A x z = A z
23 10 18 22 3eqtr4d φ x Z z T x Z A T x z = x Z A x z
24 23 ralrimivva φ x Z z T x Z A T x z = x Z A x z
25 nfv k z T x Z A T x z = x Z A x z
26 nfcv _ x T
27 nffvmpt1 _ x x Z A T k
28 nfcv _ x z
29 27 28 nffv _ x x Z A T k z
30 nffvmpt1 _ x x Z A k
31 30 28 nffv _ x x Z A k z
32 29 31 nfeq x x Z A T k z = x Z A k z
33 26 32 nfralw x z T x Z A T k z = x Z A k z
34 fveq2 x = k x Z A T x = x Z A T k
35 34 fveq1d x = k x Z A T x z = x Z A T k z
36 fveq2 x = k x Z A x = x Z A k
37 36 fveq1d x = k x Z A x z = x Z A k z
38 35 37 eqeq12d x = k x Z A T x z = x Z A x z x Z A T k z = x Z A k z
39 38 ralbidv x = k z T x Z A T x z = x Z A x z z T x Z A T k z = x Z A k z
40 25 33 39 cbvralw x Z z T x Z A T x z = x Z A x z k Z z T x Z A T k z = x Z A k z
41 24 40 sylib φ k Z z T x Z A T k z = x Z A k z
42 41 r19.21bi φ k Z z T x Z A T k z = x Z A k z
43 fvoveq1 x Z A T k z = x Z A k z x Z A T k z G z = x Z A k z G z
44 43 breq1d x Z A T k z = x Z A k z x Z A T k z G z < r x Z A k z G z < r
45 44 ralimi z T x Z A T k z = x Z A k z z T x Z A T k z G z < r x Z A k z G z < r
46 ralbi z T x Z A T k z G z < r x Z A k z G z < r z T x Z A T k z G z < r z T x Z A k z G z < r
47 42 45 46 3syl φ k Z z T x Z A T k z G z < r z T x Z A k z G z < r
48 8 47 sylibrd φ k Z z S x Z A k z G z < r z T x Z A T k z G z < r
49 5 48 sylan2 φ j Z k j z S x Z A k z G z < r z T x Z A T k z G z < r
50 49 anassrs φ j Z k j z S x Z A k z G z < r z T x Z A T k z G z < r
51 50 ralimdva φ j Z k j z S x Z A k z G z < r k j z T x Z A T k z G z < r
52 51 reximdva φ j Z k j z S x Z A k z G z < r j Z k j z T x Z A T k z G z < r
53 52 ralimdv φ r + j Z k j z S x Z A k z G z < r r + j Z k j z T x Z A T k z G z < r
54 ulmf x Z A u S G m x Z A : m S
55 4 54 syl φ m x Z A : m S
56 fdm x Z A : m S dom x Z A = m
57 19 dmmptss dom x Z A Z
58 56 57 eqsstrrdi x Z A : m S m Z
59 uzid m m m
60 59 adantl φ m m m
61 ssel m Z m m m Z
62 eluzel2 m M M
63 62 1 eleq2s m Z M
64 61 63 syl6 m Z m m M
65 58 60 64 syl2imc φ m x Z A : m S M
66 65 rexlimdva φ m x Z A : m S M
67 55 66 mpd φ M
68 3 ralrimiva φ x Z A W
69 19 fnmpt x Z A W x Z A Fn Z
70 68 69 syl φ x Z A Fn Z
71 frn x Z A : m S ran x Z A S
72 71 rexlimivw m x Z A : m S ran x Z A S
73 55 72 syl φ ran x Z A S
74 df-f x Z A : Z S x Z A Fn Z ran x Z A S
75 70 73 74 sylanbrc φ x Z A : Z S
76 eqidd φ k Z z S x Z A k z = x Z A k z
77 eqidd φ z S G z = G z
78 ulmcl x Z A u S G G : S
79 4 78 syl φ G : S
80 ulmscl x Z A u S G S V
81 4 80 syl φ S V
82 1 67 75 76 77 79 81 ulm2 φ x Z A u S G r + j Z k j z S x Z A k z G z < r
83 75 fvmptelrn φ x Z A S
84 elmapi A S A : S
85 83 84 syl φ x Z A : S
86 2 adantr φ x Z T S
87 85 86 fssresd φ x Z A T : T
88 cnex V
89 81 2 ssexd φ T V
90 89 adantr φ x Z T V
91 elmapg V T V A T T A T : T
92 88 90 91 sylancr φ x Z A T T A T : T
93 87 92 mpbird φ x Z A T T
94 93 fmpttd φ x Z A T : Z T
95 eqidd φ k Z z T x Z A T k z = x Z A T k z
96 fvres z T G T z = G z
97 96 adantl φ z T G T z = G z
98 79 2 fssresd φ G T : T
99 1 67 94 95 97 98 89 ulm2 φ x Z A T u T G T r + j Z k j z T x Z A T k z G z < r
100 53 82 99 3imtr4d φ x Z A u S G x Z A T u T G T
101 4 100 mpd φ x Z A T u T G T