Metamath Proof Explorer


Theorem unxpwdom3

Description: Weaker version of unxpwdom where a function is required only to be cancellative, not an injection. D and B are to be thought of as "large" "horizonal" sets, the others as "small". Because the operator is row-wise injective, but the whole row cannot inject into A , each row must hit an element of B ; by column injectivity, each row can be identified in at least one way by the B element that it hits and the column in which it is hit. (Contributed by Stefan O'Rear, 8-Jul-2015)MOVABLE

Ref Expression
Hypotheses unxpwdom3.av φ A V
unxpwdom3.bv φ B W
unxpwdom3.dv φ D X
unxpwdom3.ov φ a C b D a + ˙ b A B
unxpwdom3.lc φ a C b D c D a + ˙ b = a + ˙ c b = c
unxpwdom3.rc φ d D a C c C c + ˙ d = a + ˙ d c = a
unxpwdom3.ni φ ¬ D A
Assertion unxpwdom3 φ C * D × B

Proof

Step Hyp Ref Expression
1 unxpwdom3.av φ A V
2 unxpwdom3.bv φ B W
3 unxpwdom3.dv φ D X
4 unxpwdom3.ov φ a C b D a + ˙ b A B
5 unxpwdom3.lc φ a C b D c D a + ˙ b = a + ˙ c b = c
6 unxpwdom3.rc φ d D a C c C c + ˙ d = a + ˙ d c = a
7 unxpwdom3.ni φ ¬ D A
8 3 2 xpexd φ D × B V
9 simprr φ a C d D a + ˙ d B a + ˙ d B
10 simplr φ a C d D a + ˙ d B a C
11 6 an4s φ a C d D c C c + ˙ d = a + ˙ d c = a
12 11 anassrs φ a C d D c C c + ˙ d = a + ˙ d c = a
13 12 adantlrr φ a C d D a + ˙ d B c C c + ˙ d = a + ˙ d c = a
14 10 13 riota5 φ a C d D a + ˙ d B ι c C | c + ˙ d = a + ˙ d = a
15 14 eqcomd φ a C d D a + ˙ d B a = ι c C | c + ˙ d = a + ˙ d
16 eqeq2 y = a + ˙ d c + ˙ d = y c + ˙ d = a + ˙ d
17 16 riotabidv y = a + ˙ d ι c C | c + ˙ d = y = ι c C | c + ˙ d = a + ˙ d
18 17 rspceeqv a + ˙ d B a = ι c C | c + ˙ d = a + ˙ d y B a = ι c C | c + ˙ d = y
19 9 15 18 syl2anc φ a C d D a + ˙ d B y B a = ι c C | c + ˙ d = y
20 7 adantr φ a C ¬ D A
21 1 ad2antrr φ a C d D ¬ a + ˙ d B A V
22 oveq2 d = b a + ˙ d = a + ˙ b
23 22 eleq1d d = b a + ˙ d B a + ˙ b B
24 23 notbid d = b ¬ a + ˙ d B ¬ a + ˙ b B
25 24 rspcv b D d D ¬ a + ˙ d B ¬ a + ˙ b B
26 25 adantl φ a C b D d D ¬ a + ˙ d B ¬ a + ˙ b B
27 4 3expa φ a C b D a + ˙ b A B
28 elun a + ˙ b A B a + ˙ b A a + ˙ b B
29 27 28 sylib φ a C b D a + ˙ b A a + ˙ b B
30 29 orcomd φ a C b D a + ˙ b B a + ˙ b A
31 30 ord φ a C b D ¬ a + ˙ b B a + ˙ b A
32 26 31 syld φ a C b D d D ¬ a + ˙ d B a + ˙ b A
33 32 impancom φ a C d D ¬ a + ˙ d B b D a + ˙ b A
34 5 ex φ a C b D c D a + ˙ b = a + ˙ c b = c
35 34 adantr φ a C d D ¬ a + ˙ d B b D c D a + ˙ b = a + ˙ c b = c
36 33 35 dom2d φ a C d D ¬ a + ˙ d B A V D A
37 21 36 mpd φ a C d D ¬ a + ˙ d B D A
38 20 37 mtand φ a C ¬ d D ¬ a + ˙ d B
39 dfrex2 d D a + ˙ d B ¬ d D ¬ a + ˙ d B
40 38 39 sylibr φ a C d D a + ˙ d B
41 19 40 reximddv φ a C d D y B a = ι c C | c + ˙ d = y
42 vex d V
43 vex y V
44 42 43 op1std x = d y 1 st x = d
45 44 oveq2d x = d y c + ˙ 1 st x = c + ˙ d
46 42 43 op2ndd x = d y 2 nd x = y
47 45 46 eqeq12d x = d y c + ˙ 1 st x = 2 nd x c + ˙ d = y
48 47 riotabidv x = d y ι c C | c + ˙ 1 st x = 2 nd x = ι c C | c + ˙ d = y
49 48 eqeq2d x = d y a = ι c C | c + ˙ 1 st x = 2 nd x a = ι c C | c + ˙ d = y
50 49 rexxp x D × B a = ι c C | c + ˙ 1 st x = 2 nd x d D y B a = ι c C | c + ˙ d = y
51 41 50 sylibr φ a C x D × B a = ι c C | c + ˙ 1 st x = 2 nd x
52 8 51 wdomd φ C * D × B