Metamath Proof Explorer


Theorem updjud

Description: Universal property of the disjoint union. This theorem shows that the disjoint union, together with the left and right injections df-inl and df-inr , is thecoproduct in the category of sets, see Wikipedia "Coproduct", https://en.wikipedia.org/wiki/Coproduct (25-Aug-2023). This is a special case of Example 1 of coproducts in Section 10.67 of Adamek p. 185. (Proposed by BJ, 25-Jun-2022.) (Contributed by AV, 28-Jun-2022)

Ref Expression
Hypotheses updjud.f φF:AC
updjud.g φG:BC
updjud.a φAV
updjud.b φBW
Assertion updjud φ∃!hh:A⊔︀BChinlA=FhinrB=G

Proof

Step Hyp Ref Expression
1 updjud.f φF:AC
2 updjud.g φG:BC
3 updjud.a φAV
4 updjud.b φBW
5 3 4 jca φAVBW
6 djuex AVBWA⊔︀BV
7 mptexg A⊔︀BVxA⊔︀Bif1stx=F2ndxG2ndxV
8 5 6 7 3syl φxA⊔︀Bif1stx=F2ndxG2ndxV
9 feq1 h=xA⊔︀Bif1stx=F2ndxG2ndxh:A⊔︀BCxA⊔︀Bif1stx=F2ndxG2ndx:A⊔︀BC
10 coeq1 h=xA⊔︀Bif1stx=F2ndxG2ndxhinlA=xA⊔︀Bif1stx=F2ndxG2ndxinlA
11 10 eqeq1d h=xA⊔︀Bif1stx=F2ndxG2ndxhinlA=FxA⊔︀Bif1stx=F2ndxG2ndxinlA=F
12 coeq1 h=xA⊔︀Bif1stx=F2ndxG2ndxhinrB=xA⊔︀Bif1stx=F2ndxG2ndxinrB
13 12 eqeq1d h=xA⊔︀Bif1stx=F2ndxG2ndxhinrB=GxA⊔︀Bif1stx=F2ndxG2ndxinrB=G
14 9 11 13 3anbi123d h=xA⊔︀Bif1stx=F2ndxG2ndxh:A⊔︀BChinlA=FhinrB=GxA⊔︀Bif1stx=F2ndxG2ndx:A⊔︀BCxA⊔︀Bif1stx=F2ndxG2ndxinlA=FxA⊔︀Bif1stx=F2ndxG2ndxinrB=G
15 eqeq1 h=xA⊔︀Bif1stx=F2ndxG2ndxh=kxA⊔︀Bif1stx=F2ndxG2ndx=k
16 15 imbi2d h=xA⊔︀Bif1stx=F2ndxG2ndxk:A⊔︀BCkinlA=FkinrB=Gh=kk:A⊔︀BCkinlA=FkinrB=GxA⊔︀Bif1stx=F2ndxG2ndx=k
17 16 ralbidv h=xA⊔︀Bif1stx=F2ndxG2ndxkVk:A⊔︀BCkinlA=FkinrB=Gh=kkVk:A⊔︀BCkinlA=FkinrB=GxA⊔︀Bif1stx=F2ndxG2ndx=k
18 14 17 anbi12d h=xA⊔︀Bif1stx=F2ndxG2ndxh:A⊔︀BChinlA=FhinrB=GkVk:A⊔︀BCkinlA=FkinrB=Gh=kxA⊔︀Bif1stx=F2ndxG2ndx:A⊔︀BCxA⊔︀Bif1stx=F2ndxG2ndxinlA=FxA⊔︀Bif1stx=F2ndxG2ndxinrB=GkVk:A⊔︀BCkinlA=FkinrB=GxA⊔︀Bif1stx=F2ndxG2ndx=k
19 18 adantl φh=xA⊔︀Bif1stx=F2ndxG2ndxh:A⊔︀BChinlA=FhinrB=GkVk:A⊔︀BCkinlA=FkinrB=Gh=kxA⊔︀Bif1stx=F2ndxG2ndx:A⊔︀BCxA⊔︀Bif1stx=F2ndxG2ndxinlA=FxA⊔︀Bif1stx=F2ndxG2ndxinrB=GkVk:A⊔︀BCkinlA=FkinrB=GxA⊔︀Bif1stx=F2ndxG2ndx=k
20 eqid xA⊔︀Bif1stx=F2ndxG2ndx=xA⊔︀Bif1stx=F2ndxG2ndx
21 1 2 20 updjudhf φxA⊔︀Bif1stx=F2ndxG2ndx:A⊔︀BC
22 1 2 20 updjudhcoinlf φxA⊔︀Bif1stx=F2ndxG2ndxinlA=F
23 1 2 20 updjudhcoinrg φxA⊔︀Bif1stx=F2ndxG2ndxinrB=G
24 simpr φxA⊔︀Bif1stx=F2ndxG2ndx:A⊔︀BCxA⊔︀Bif1stx=F2ndxG2ndxinlA=FxA⊔︀Bif1stx=F2ndxG2ndxinrB=GxA⊔︀Bif1stx=F2ndxG2ndx:A⊔︀BCxA⊔︀Bif1stx=F2ndxG2ndxinlA=FxA⊔︀Bif1stx=F2ndxG2ndxinrB=G
25 eqeq2 xA⊔︀Bif1stx=F2ndxG2ndxinlA=FkinlA=xA⊔︀Bif1stx=F2ndxG2ndxinlAkinlA=F
26 fvres zAinlAz=inlz
27 26 eqcomd zAinlz=inlAz
28 27 eqeq2d zAy=inlzy=inlAz
29 28 adantl xA⊔︀Bif1stx=F2ndxG2ndxinlA=kinlAφzAy=inlzy=inlAz
30 fveq1 xA⊔︀Bif1stx=F2ndxG2ndxinlA=kinlAxA⊔︀Bif1stx=F2ndxG2ndxinlAz=kinlAz
31 30 ad2antrr xA⊔︀Bif1stx=F2ndxG2ndxinlA=kinlAφzAxA⊔︀Bif1stx=F2ndxG2ndxinlAz=kinlAz
32 inlresf inlA:AA⊔︀B
33 ffn inlA:AA⊔︀BinlAFnA
34 32 33 mp1i xA⊔︀Bif1stx=F2ndxG2ndxinlA=kinlAφinlAFnA
35 fvco2 inlAFnAzAxA⊔︀Bif1stx=F2ndxG2ndxinlAz=xA⊔︀Bif1stx=F2ndxG2ndxinlAz
36 34 35 sylan xA⊔︀Bif1stx=F2ndxG2ndxinlA=kinlAφzAxA⊔︀Bif1stx=F2ndxG2ndxinlAz=xA⊔︀Bif1stx=F2ndxG2ndxinlAz
37 fvco2 inlAFnAzAkinlAz=kinlAz
38 34 37 sylan xA⊔︀Bif1stx=F2ndxG2ndxinlA=kinlAφzAkinlAz=kinlAz
39 31 36 38 3eqtr3d xA⊔︀Bif1stx=F2ndxG2ndxinlA=kinlAφzAxA⊔︀Bif1stx=F2ndxG2ndxinlAz=kinlAz
40 fveq2 y=inlAzxA⊔︀Bif1stx=F2ndxG2ndxy=xA⊔︀Bif1stx=F2ndxG2ndxinlAz
41 fveq2 y=inlAzky=kinlAz
42 40 41 eqeq12d y=inlAzxA⊔︀Bif1stx=F2ndxG2ndxy=kyxA⊔︀Bif1stx=F2ndxG2ndxinlAz=kinlAz
43 39 42 syl5ibrcom xA⊔︀Bif1stx=F2ndxG2ndxinlA=kinlAφzAy=inlAzxA⊔︀Bif1stx=F2ndxG2ndxy=ky
44 29 43 sylbid xA⊔︀Bif1stx=F2ndxG2ndxinlA=kinlAφzAy=inlzxA⊔︀Bif1stx=F2ndxG2ndxy=ky
45 44 expimpd xA⊔︀Bif1stx=F2ndxG2ndxinlA=kinlAφzAy=inlzxA⊔︀Bif1stx=F2ndxG2ndxy=ky
46 45 ex xA⊔︀Bif1stx=F2ndxG2ndxinlA=kinlAφzAy=inlzxA⊔︀Bif1stx=F2ndxG2ndxy=ky
47 46 eqcoms kinlA=xA⊔︀Bif1stx=F2ndxG2ndxinlAφzAy=inlzxA⊔︀Bif1stx=F2ndxG2ndxy=ky
48 25 47 syl6bir xA⊔︀Bif1stx=F2ndxG2ndxinlA=FkinlA=FφzAy=inlzxA⊔︀Bif1stx=F2ndxG2ndxy=ky
49 48 com23 xA⊔︀Bif1stx=F2ndxG2ndxinlA=FφkinlA=FzAy=inlzxA⊔︀Bif1stx=F2ndxG2ndxy=ky
50 49 3ad2ant2 xA⊔︀Bif1stx=F2ndxG2ndx:A⊔︀BCxA⊔︀Bif1stx=F2ndxG2ndxinlA=FxA⊔︀Bif1stx=F2ndxG2ndxinrB=GφkinlA=FzAy=inlzxA⊔︀Bif1stx=F2ndxG2ndxy=ky
51 50 impcom φxA⊔︀Bif1stx=F2ndxG2ndx:A⊔︀BCxA⊔︀Bif1stx=F2ndxG2ndxinlA=FxA⊔︀Bif1stx=F2ndxG2ndxinrB=GkinlA=FzAy=inlzxA⊔︀Bif1stx=F2ndxG2ndxy=ky
52 51 com12 kinlA=FφxA⊔︀Bif1stx=F2ndxG2ndx:A⊔︀BCxA⊔︀Bif1stx=F2ndxG2ndxinlA=FxA⊔︀Bif1stx=F2ndxG2ndxinrB=GzAy=inlzxA⊔︀Bif1stx=F2ndxG2ndxy=ky
53 52 3ad2ant2 k:A⊔︀BCkinlA=FkinrB=GφxA⊔︀Bif1stx=F2ndxG2ndx:A⊔︀BCxA⊔︀Bif1stx=F2ndxG2ndxinlA=FxA⊔︀Bif1stx=F2ndxG2ndxinrB=GzAy=inlzxA⊔︀Bif1stx=F2ndxG2ndxy=ky
54 53 impcom φxA⊔︀Bif1stx=F2ndxG2ndx:A⊔︀BCxA⊔︀Bif1stx=F2ndxG2ndxinlA=FxA⊔︀Bif1stx=F2ndxG2ndxinrB=Gk:A⊔︀BCkinlA=FkinrB=GzAy=inlzxA⊔︀Bif1stx=F2ndxG2ndxy=ky
55 54 com12 zAy=inlzφxA⊔︀Bif1stx=F2ndxG2ndx:A⊔︀BCxA⊔︀Bif1stx=F2ndxG2ndxinlA=FxA⊔︀Bif1stx=F2ndxG2ndxinrB=Gk:A⊔︀BCkinlA=FkinrB=GxA⊔︀Bif1stx=F2ndxG2ndxy=ky
56 55 rexlimiva zAy=inlzφxA⊔︀Bif1stx=F2ndxG2ndx:A⊔︀BCxA⊔︀Bif1stx=F2ndxG2ndxinlA=FxA⊔︀Bif1stx=F2ndxG2ndxinrB=Gk:A⊔︀BCkinlA=FkinrB=GxA⊔︀Bif1stx=F2ndxG2ndxy=ky
57 eqeq2 xA⊔︀Bif1stx=F2ndxG2ndxinrB=GkinrB=xA⊔︀Bif1stx=F2ndxG2ndxinrBkinrB=G
58 fvres zBinrBz=inrz
59 58 eqcomd zBinrz=inrBz
60 59 eqeq2d zBy=inrzy=inrBz
61 60 adantl xA⊔︀Bif1stx=F2ndxG2ndxinrB=kinrBφzBy=inrzy=inrBz
62 fveq1 xA⊔︀Bif1stx=F2ndxG2ndxinrB=kinrBxA⊔︀Bif1stx=F2ndxG2ndxinrBz=kinrBz
63 62 ad2antrr xA⊔︀Bif1stx=F2ndxG2ndxinrB=kinrBφzBxA⊔︀Bif1stx=F2ndxG2ndxinrBz=kinrBz
64 inrresf inrB:BA⊔︀B
65 ffn inrB:BA⊔︀BinrBFnB
66 64 65 mp1i xA⊔︀Bif1stx=F2ndxG2ndxinrB=kinrBφinrBFnB
67 fvco2 inrBFnBzBxA⊔︀Bif1stx=F2ndxG2ndxinrBz=xA⊔︀Bif1stx=F2ndxG2ndxinrBz
68 66 67 sylan xA⊔︀Bif1stx=F2ndxG2ndxinrB=kinrBφzBxA⊔︀Bif1stx=F2ndxG2ndxinrBz=xA⊔︀Bif1stx=F2ndxG2ndxinrBz
69 fvco2 inrBFnBzBkinrBz=kinrBz
70 66 69 sylan xA⊔︀Bif1stx=F2ndxG2ndxinrB=kinrBφzBkinrBz=kinrBz
71 63 68 70 3eqtr3d xA⊔︀Bif1stx=F2ndxG2ndxinrB=kinrBφzBxA⊔︀Bif1stx=F2ndxG2ndxinrBz=kinrBz
72 fveq2 y=inrBzxA⊔︀Bif1stx=F2ndxG2ndxy=xA⊔︀Bif1stx=F2ndxG2ndxinrBz
73 fveq2 y=inrBzky=kinrBz
74 72 73 eqeq12d y=inrBzxA⊔︀Bif1stx=F2ndxG2ndxy=kyxA⊔︀Bif1stx=F2ndxG2ndxinrBz=kinrBz
75 71 74 syl5ibrcom xA⊔︀Bif1stx=F2ndxG2ndxinrB=kinrBφzBy=inrBzxA⊔︀Bif1stx=F2ndxG2ndxy=ky
76 61 75 sylbid xA⊔︀Bif1stx=F2ndxG2ndxinrB=kinrBφzBy=inrzxA⊔︀Bif1stx=F2ndxG2ndxy=ky
77 76 expimpd xA⊔︀Bif1stx=F2ndxG2ndxinrB=kinrBφzBy=inrzxA⊔︀Bif1stx=F2ndxG2ndxy=ky
78 77 ex xA⊔︀Bif1stx=F2ndxG2ndxinrB=kinrBφzBy=inrzxA⊔︀Bif1stx=F2ndxG2ndxy=ky
79 78 eqcoms kinrB=xA⊔︀Bif1stx=F2ndxG2ndxinrBφzBy=inrzxA⊔︀Bif1stx=F2ndxG2ndxy=ky
80 57 79 syl6bir xA⊔︀Bif1stx=F2ndxG2ndxinrB=GkinrB=GφzBy=inrzxA⊔︀Bif1stx=F2ndxG2ndxy=ky
81 80 com23 xA⊔︀Bif1stx=F2ndxG2ndxinrB=GφkinrB=GzBy=inrzxA⊔︀Bif1stx=F2ndxG2ndxy=ky
82 81 3ad2ant3 xA⊔︀Bif1stx=F2ndxG2ndx:A⊔︀BCxA⊔︀Bif1stx=F2ndxG2ndxinlA=FxA⊔︀Bif1stx=F2ndxG2ndxinrB=GφkinrB=GzBy=inrzxA⊔︀Bif1stx=F2ndxG2ndxy=ky
83 82 impcom φxA⊔︀Bif1stx=F2ndxG2ndx:A⊔︀BCxA⊔︀Bif1stx=F2ndxG2ndxinlA=FxA⊔︀Bif1stx=F2ndxG2ndxinrB=GkinrB=GzBy=inrzxA⊔︀Bif1stx=F2ndxG2ndxy=ky
84 83 com12 kinrB=GφxA⊔︀Bif1stx=F2ndxG2ndx:A⊔︀BCxA⊔︀Bif1stx=F2ndxG2ndxinlA=FxA⊔︀Bif1stx=F2ndxG2ndxinrB=GzBy=inrzxA⊔︀Bif1stx=F2ndxG2ndxy=ky
85 84 3ad2ant3 k:A⊔︀BCkinlA=FkinrB=GφxA⊔︀Bif1stx=F2ndxG2ndx:A⊔︀BCxA⊔︀Bif1stx=F2ndxG2ndxinlA=FxA⊔︀Bif1stx=F2ndxG2ndxinrB=GzBy=inrzxA⊔︀Bif1stx=F2ndxG2ndxy=ky
86 85 impcom φxA⊔︀Bif1stx=F2ndxG2ndx:A⊔︀BCxA⊔︀Bif1stx=F2ndxG2ndxinlA=FxA⊔︀Bif1stx=F2ndxG2ndxinrB=Gk:A⊔︀BCkinlA=FkinrB=GzBy=inrzxA⊔︀Bif1stx=F2ndxG2ndxy=ky
87 86 com12 zBy=inrzφxA⊔︀Bif1stx=F2ndxG2ndx:A⊔︀BCxA⊔︀Bif1stx=F2ndxG2ndxinlA=FxA⊔︀Bif1stx=F2ndxG2ndxinrB=Gk:A⊔︀BCkinlA=FkinrB=GxA⊔︀Bif1stx=F2ndxG2ndxy=ky
88 87 rexlimiva zBy=inrzφxA⊔︀Bif1stx=F2ndxG2ndx:A⊔︀BCxA⊔︀Bif1stx=F2ndxG2ndxinlA=FxA⊔︀Bif1stx=F2ndxG2ndxinrB=Gk:A⊔︀BCkinlA=FkinrB=GxA⊔︀Bif1stx=F2ndxG2ndxy=ky
89 56 88 jaoi zAy=inlzzBy=inrzφxA⊔︀Bif1stx=F2ndxG2ndx:A⊔︀BCxA⊔︀Bif1stx=F2ndxG2ndxinlA=FxA⊔︀Bif1stx=F2ndxG2ndxinrB=Gk:A⊔︀BCkinlA=FkinrB=GxA⊔︀Bif1stx=F2ndxG2ndxy=ky
90 djur yA⊔︀BzAy=inlzzBy=inrz
91 89 90 syl11 φxA⊔︀Bif1stx=F2ndxG2ndx:A⊔︀BCxA⊔︀Bif1stx=F2ndxG2ndxinlA=FxA⊔︀Bif1stx=F2ndxG2ndxinrB=Gk:A⊔︀BCkinlA=FkinrB=GyA⊔︀BxA⊔︀Bif1stx=F2ndxG2ndxy=ky
92 91 ralrimiv φxA⊔︀Bif1stx=F2ndxG2ndx:A⊔︀BCxA⊔︀Bif1stx=F2ndxG2ndxinlA=FxA⊔︀Bif1stx=F2ndxG2ndxinrB=Gk:A⊔︀BCkinlA=FkinrB=GyA⊔︀BxA⊔︀Bif1stx=F2ndxG2ndxy=ky
93 ffn xA⊔︀Bif1stx=F2ndxG2ndx:A⊔︀BCxA⊔︀Bif1stx=F2ndxG2ndxFnA⊔︀B
94 93 3ad2ant1 xA⊔︀Bif1stx=F2ndxG2ndx:A⊔︀BCxA⊔︀Bif1stx=F2ndxG2ndxinlA=FxA⊔︀Bif1stx=F2ndxG2ndxinrB=GxA⊔︀Bif1stx=F2ndxG2ndxFnA⊔︀B
95 94 adantl φxA⊔︀Bif1stx=F2ndxG2ndx:A⊔︀BCxA⊔︀Bif1stx=F2ndxG2ndxinlA=FxA⊔︀Bif1stx=F2ndxG2ndxinrB=GxA⊔︀Bif1stx=F2ndxG2ndxFnA⊔︀B
96 ffn k:A⊔︀BCkFnA⊔︀B
97 96 3ad2ant1 k:A⊔︀BCkinlA=FkinrB=GkFnA⊔︀B
98 eqfnfv xA⊔︀Bif1stx=F2ndxG2ndxFnA⊔︀BkFnA⊔︀BxA⊔︀Bif1stx=F2ndxG2ndx=kyA⊔︀BxA⊔︀Bif1stx=F2ndxG2ndxy=ky
99 95 97 98 syl2an φxA⊔︀Bif1stx=F2ndxG2ndx:A⊔︀BCxA⊔︀Bif1stx=F2ndxG2ndxinlA=FxA⊔︀Bif1stx=F2ndxG2ndxinrB=Gk:A⊔︀BCkinlA=FkinrB=GxA⊔︀Bif1stx=F2ndxG2ndx=kyA⊔︀BxA⊔︀Bif1stx=F2ndxG2ndxy=ky
100 92 99 mpbird φxA⊔︀Bif1stx=F2ndxG2ndx:A⊔︀BCxA⊔︀Bif1stx=F2ndxG2ndxinlA=FxA⊔︀Bif1stx=F2ndxG2ndxinrB=Gk:A⊔︀BCkinlA=FkinrB=GxA⊔︀Bif1stx=F2ndxG2ndx=k
101 100 ex φxA⊔︀Bif1stx=F2ndxG2ndx:A⊔︀BCxA⊔︀Bif1stx=F2ndxG2ndxinlA=FxA⊔︀Bif1stx=F2ndxG2ndxinrB=Gk:A⊔︀BCkinlA=FkinrB=GxA⊔︀Bif1stx=F2ndxG2ndx=k
102 101 ralrimivw φxA⊔︀Bif1stx=F2ndxG2ndx:A⊔︀BCxA⊔︀Bif1stx=F2ndxG2ndxinlA=FxA⊔︀Bif1stx=F2ndxG2ndxinrB=GkVk:A⊔︀BCkinlA=FkinrB=GxA⊔︀Bif1stx=F2ndxG2ndx=k
103 24 102 jca φxA⊔︀Bif1stx=F2ndxG2ndx:A⊔︀BCxA⊔︀Bif1stx=F2ndxG2ndxinlA=FxA⊔︀Bif1stx=F2ndxG2ndxinrB=GxA⊔︀Bif1stx=F2ndxG2ndx:A⊔︀BCxA⊔︀Bif1stx=F2ndxG2ndxinlA=FxA⊔︀Bif1stx=F2ndxG2ndxinrB=GkVk:A⊔︀BCkinlA=FkinrB=GxA⊔︀Bif1stx=F2ndxG2ndx=k
104 103 ex φxA⊔︀Bif1stx=F2ndxG2ndx:A⊔︀BCxA⊔︀Bif1stx=F2ndxG2ndxinlA=FxA⊔︀Bif1stx=F2ndxG2ndxinrB=GxA⊔︀Bif1stx=F2ndxG2ndx:A⊔︀BCxA⊔︀Bif1stx=F2ndxG2ndxinlA=FxA⊔︀Bif1stx=F2ndxG2ndxinrB=GkVk:A⊔︀BCkinlA=FkinrB=GxA⊔︀Bif1stx=F2ndxG2ndx=k
105 21 22 23 104 mp3and φxA⊔︀Bif1stx=F2ndxG2ndx:A⊔︀BCxA⊔︀Bif1stx=F2ndxG2ndxinlA=FxA⊔︀Bif1stx=F2ndxG2ndxinrB=GkVk:A⊔︀BCkinlA=FkinrB=GxA⊔︀Bif1stx=F2ndxG2ndx=k
106 8 19 105 rspcedvd φhVh:A⊔︀BChinlA=FhinrB=GkVk:A⊔︀BCkinlA=FkinrB=Gh=k
107 feq1 h=kh:A⊔︀BCk:A⊔︀BC
108 coeq1 h=khinlA=kinlA
109 108 eqeq1d h=khinlA=FkinlA=F
110 coeq1 h=khinrB=kinrB
111 110 eqeq1d h=khinrB=GkinrB=G
112 107 109 111 3anbi123d h=kh:A⊔︀BChinlA=FhinrB=Gk:A⊔︀BCkinlA=FkinrB=G
113 112 reu8 ∃!hVh:A⊔︀BChinlA=FhinrB=GhVh:A⊔︀BChinlA=FhinrB=GkVk:A⊔︀BCkinlA=FkinrB=Gh=k
114 106 113 sylibr φ∃!hVh:A⊔︀BChinlA=FhinrB=G
115 reuv ∃!hVh:A⊔︀BChinlA=FhinrB=G∃!hh:A⊔︀BChinlA=FhinrB=G
116 114 115 sylib φ∃!hh:A⊔︀BChinlA=FhinrB=G