Metamath Proof Explorer


Theorem uzublem

Description: A set of reals, indexed by upper integers, is bound if and only if any upper part is bound. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses uzublem.1 jφ
uzublem.2 _jX
uzublem.3 φM
uzublem.4 Z=M
uzublem.5 φY
uzublem.6 W=supranjMKB<
uzublem.7 X=ifWYYW
uzublem.8 φKZ
uzublem.9 φjZB
uzublem.10 φjKBY
Assertion uzublem φxjZBx

Proof

Step Hyp Ref Expression
1 uzublem.1 jφ
2 uzublem.2 _jX
3 uzublem.3 φM
4 uzublem.4 Z=M
5 uzublem.5 φY
6 uzublem.6 W=supranjMKB<
7 uzublem.7 X=ifWYYW
8 uzublem.8 φKZ
9 uzublem.9 φjZB
10 uzublem.10 φjKBY
11 6 a1i φW=supranjMKB<
12 ltso <Or
13 12 a1i φ<Or
14 fzfid φMKFin
15 4 eluzelz2 KZK
16 8 15 syl φK
17 3 zred φM
18 17 leidd φMM
19 8 4 eleqtrdi φKM
20 eluzle KMMK
21 19 20 syl φMK
22 3 16 3 18 21 elfzd φMMK
23 22 ne0d φMK
24 fzssuz MKM
25 4 eqcomi M=Z
26 24 25 sseqtri MKZ
27 id jMKjMK
28 26 27 sselid jMKjZ
29 28 9 sylan2 φjMKB
30 1 13 14 23 29 fisupclrnmpt φsupranjMKB<
31 11 30 eqeltrd φW
32 5 31 ifcld φifWYYW
33 7 32 eqeltrid φX
34 9 adantr φjZKjB
35 5 ad2antrr φjZKjY
36 33 ad2antrr φjZKjX
37 10 ad2antrr φjZKjjKBY
38 eqid K=K
39 16 ad2antrr φjZKjK
40 4 eluzelz2 jZj
41 40 ad2antlr φjZKjj
42 simpr φjZKjKj
43 38 39 41 42 eluzd φjZKjjK
44 rspa jKBYjKBY
45 37 43 44 syl2anc φjZKjBY
46 max2 WYYifWYYW
47 31 5 46 syl2anc φYifWYYW
48 47 7 breqtrrdi φYX
49 48 ad2antrr φjZKjYX
50 34 35 36 45 49 letrd φjZKjBX
51 simpr φjZ¬Kj¬Kj
52 uzssre M
53 4 52 eqsstri Z
54 53 sseli jZj
55 54 ad2antlr φjZ¬Kjj
56 53 8 sselid φK
57 56 ad2antrr φjZ¬KjK
58 55 57 ltnled φjZ¬Kjj<K¬Kj
59 51 58 mpbird φjZ¬Kjj<K
60 9 adantr φjZj<KB
61 6 31 eqeltrrid φsupranjMKB<
62 6 61 eqeltrid φW
63 62 ad2antrr φjZj<KW
64 5 62 ifcld φifWYYW
65 7 64 eqeltrid φX
66 65 ad2antrr φjZj<KX
67 simpll φjZj<Kφ
68 3 ad2antrr φjZj<KM
69 16 ad2antrr φjZj<KK
70 4 eleq2i jZjM
71 70 biimpi jZjM
72 71 ad2antlr φjZj<KjM
73 simpr φjZj<Kj<K
74 72 69 73 elfzod φjZj<KjM..^K
75 elfzouz jM..^KjM
76 75 25 eleqtrdi jM..^KjZ
77 74 76 40 3syl φjZj<Kj
78 eluzle jMMj
79 71 78 syl jZMj
80 79 ad2antlr φjZj<KMj
81 74 76 54 3syl φjZj<Kj
82 56 ad2antrr φjZj<KK
83 81 82 73 ltled φjZj<KjK
84 68 69 77 80 83 elfzd φjZj<KjMK
85 1 29 ralrimia φjMKB
86 fimaxre3 MKFinjMKByjMKBy
87 14 85 86 syl2anc φyjMKBy
88 1 29 87 suprubrnmpt φjMKBsupranjMKB<
89 67 84 88 syl2anc φjZj<KBsupranjMKB<
90 89 6 breqtrrdi φjZj<KBW
91 max1 WYWifWYYW
92 31 5 91 syl2anc φWifWYYW
93 92 7 breqtrrdi φWX
94 93 ad2antrr φjZj<KWX
95 60 63 66 90 94 letrd φjZj<KBX
96 59 95 syldan φjZ¬KjBX
97 50 96 pm2.61dan φjZBX
98 97 ex φjZBX
99 1 98 ralrimi φjZBX
100 nfv xjZBX
101 nfcv _jx
102 101 2 nfeq jx=X
103 breq2 x=XBxBX
104 102 103 ralbid x=XjZBxjZBX
105 100 104 rspce XjZBXxjZBx
106 33 99 105 syl2anc φxjZBx