Metamath Proof Explorer


Theorem vacn

Description: Vector addition is jointly continuous in both arguments. (Contributed by Jeff Hankins, 16-Jun-2009) (Revised by Mario Carneiro, 10-Sep-2015) (New usage is discouraged.)

Ref Expression
Hypotheses vacn.c C=IndMetU
vacn.j J=MetOpenC
vacn.g G=+vU
Assertion vacn UNrmCVecGJ×tJCnJ

Proof

Step Hyp Ref Expression
1 vacn.c C=IndMetU
2 vacn.j J=MetOpenC
3 vacn.g G=+vU
4 eqid BaseSetU=BaseSetU
5 4 3 nvgf UNrmCVecG:BaseSetU×BaseSetUBaseSetU
6 rphalfcl r+r2+
7 6 adantl UNrmCVecxBaseSetUyBaseSetUr+r2+
8 simplll UNrmCVecxBaseSetUyBaseSetUr+zBaseSetUwBaseSetUUNrmCVec
9 4 1 imsmet UNrmCVecCMetBaseSetU
10 8 9 syl UNrmCVecxBaseSetUyBaseSetUr+zBaseSetUwBaseSetUCMetBaseSetU
11 simplrl UNrmCVecxBaseSetUyBaseSetUr+xBaseSetU
12 11 adantr UNrmCVecxBaseSetUyBaseSetUr+zBaseSetUwBaseSetUxBaseSetU
13 simprl UNrmCVecxBaseSetUyBaseSetUr+zBaseSetUwBaseSetUzBaseSetU
14 metcl CMetBaseSetUxBaseSetUzBaseSetUxCz
15 10 12 13 14 syl3anc UNrmCVecxBaseSetUyBaseSetUr+zBaseSetUwBaseSetUxCz
16 simplrr UNrmCVecxBaseSetUyBaseSetUr+yBaseSetU
17 16 adantr UNrmCVecxBaseSetUyBaseSetUr+zBaseSetUwBaseSetUyBaseSetU
18 simprr UNrmCVecxBaseSetUyBaseSetUr+zBaseSetUwBaseSetUwBaseSetU
19 metcl CMetBaseSetUyBaseSetUwBaseSetUyCw
20 10 17 18 19 syl3anc UNrmCVecxBaseSetUyBaseSetUr+zBaseSetUwBaseSetUyCw
21 rpre r+r
22 21 ad2antlr UNrmCVecxBaseSetUyBaseSetUr+zBaseSetUwBaseSetUr
23 lt2halves xCzyCwrxCz<r2yCw<r2xCz+yCw<r
24 15 20 22 23 syl3anc UNrmCVecxBaseSetUyBaseSetUr+zBaseSetUwBaseSetUxCz<r2yCw<r2xCz+yCw<r
25 eqid -vU=-vU
26 4 25 nvmcl UNrmCVecxBaseSetUzBaseSetUx-vUzBaseSetU
27 8 12 13 26 syl3anc UNrmCVecxBaseSetUyBaseSetUr+zBaseSetUwBaseSetUx-vUzBaseSetU
28 4 25 nvmcl UNrmCVecyBaseSetUwBaseSetUy-vUwBaseSetU
29 8 17 18 28 syl3anc UNrmCVecxBaseSetUyBaseSetUr+zBaseSetUwBaseSetUy-vUwBaseSetU
30 eqid normCVU=normCVU
31 4 3 30 nvtri UNrmCVecx-vUzBaseSetUy-vUwBaseSetUnormCVUx-vUzGy-vUwnormCVUx-vUz+normCVUy-vUw
32 8 27 29 31 syl3anc UNrmCVecxBaseSetUyBaseSetUr+zBaseSetUwBaseSetUnormCVUx-vUzGy-vUwnormCVUx-vUz+normCVUy-vUw
33 4 3 nvgcl UNrmCVecxBaseSetUyBaseSetUxGyBaseSetU
34 8 12 17 33 syl3anc UNrmCVecxBaseSetUyBaseSetUr+zBaseSetUwBaseSetUxGyBaseSetU
35 4 3 nvgcl UNrmCVeczBaseSetUwBaseSetUzGwBaseSetU
36 8 13 18 35 syl3anc UNrmCVecxBaseSetUyBaseSetUr+zBaseSetUwBaseSetUzGwBaseSetU
37 4 25 30 1 imsdval UNrmCVecxGyBaseSetUzGwBaseSetUxGyCzGw=normCVUxGy-vUzGw
38 8 34 36 37 syl3anc UNrmCVecxBaseSetUyBaseSetUr+zBaseSetUwBaseSetUxGyCzGw=normCVUxGy-vUzGw
39 4 3 25 nvaddsub4 UNrmCVecxBaseSetUyBaseSetUzBaseSetUwBaseSetUxGy-vUzGw=x-vUzGy-vUw
40 8 12 17 13 18 39 syl122anc UNrmCVecxBaseSetUyBaseSetUr+zBaseSetUwBaseSetUxGy-vUzGw=x-vUzGy-vUw
41 40 fveq2d UNrmCVecxBaseSetUyBaseSetUr+zBaseSetUwBaseSetUnormCVUxGy-vUzGw=normCVUx-vUzGy-vUw
42 38 41 eqtrd UNrmCVecxBaseSetUyBaseSetUr+zBaseSetUwBaseSetUxGyCzGw=normCVUx-vUzGy-vUw
43 4 25 30 1 imsdval UNrmCVecxBaseSetUzBaseSetUxCz=normCVUx-vUz
44 8 12 13 43 syl3anc UNrmCVecxBaseSetUyBaseSetUr+zBaseSetUwBaseSetUxCz=normCVUx-vUz
45 4 25 30 1 imsdval UNrmCVecyBaseSetUwBaseSetUyCw=normCVUy-vUw
46 8 17 18 45 syl3anc UNrmCVecxBaseSetUyBaseSetUr+zBaseSetUwBaseSetUyCw=normCVUy-vUw
47 44 46 oveq12d UNrmCVecxBaseSetUyBaseSetUr+zBaseSetUwBaseSetUxCz+yCw=normCVUx-vUz+normCVUy-vUw
48 32 42 47 3brtr4d UNrmCVecxBaseSetUyBaseSetUr+zBaseSetUwBaseSetUxGyCzGwxCz+yCw
49 metcl CMetBaseSetUxGyBaseSetUzGwBaseSetUxGyCzGw
50 10 34 36 49 syl3anc UNrmCVecxBaseSetUyBaseSetUr+zBaseSetUwBaseSetUxGyCzGw
51 15 20 readdcld UNrmCVecxBaseSetUyBaseSetUr+zBaseSetUwBaseSetUxCz+yCw
52 lelttr xGyCzGwxCz+yCwrxGyCzGwxCz+yCwxCz+yCw<rxGyCzGw<r
53 50 51 22 52 syl3anc UNrmCVecxBaseSetUyBaseSetUr+zBaseSetUwBaseSetUxGyCzGwxCz+yCwxCz+yCw<rxGyCzGw<r
54 48 53 mpand UNrmCVecxBaseSetUyBaseSetUr+zBaseSetUwBaseSetUxCz+yCw<rxGyCzGw<r
55 24 54 syld UNrmCVecxBaseSetUyBaseSetUr+zBaseSetUwBaseSetUxCz<r2yCw<r2xGyCzGw<r
56 55 ralrimivva UNrmCVecxBaseSetUyBaseSetUr+zBaseSetUwBaseSetUxCz<r2yCw<r2xGyCzGw<r
57 breq2 s=r2xCz<sxCz<r2
58 breq2 s=r2yCw<syCw<r2
59 57 58 anbi12d s=r2xCz<syCw<sxCz<r2yCw<r2
60 59 imbi1d s=r2xCz<syCw<sxGyCzGw<rxCz<r2yCw<r2xGyCzGw<r
61 60 2ralbidv s=r2zBaseSetUwBaseSetUxCz<syCw<sxGyCzGw<rzBaseSetUwBaseSetUxCz<r2yCw<r2xGyCzGw<r
62 61 rspcev r2+zBaseSetUwBaseSetUxCz<r2yCw<r2xGyCzGw<rs+zBaseSetUwBaseSetUxCz<syCw<sxGyCzGw<r
63 7 56 62 syl2anc UNrmCVecxBaseSetUyBaseSetUr+s+zBaseSetUwBaseSetUxCz<syCw<sxGyCzGw<r
64 63 ralrimiva UNrmCVecxBaseSetUyBaseSetUr+s+zBaseSetUwBaseSetUxCz<syCw<sxGyCzGw<r
65 64 ralrimivva UNrmCVecxBaseSetUyBaseSetUr+s+zBaseSetUwBaseSetUxCz<syCw<sxGyCzGw<r
66 4 1 imsxmet UNrmCVecC∞MetBaseSetU
67 2 2 2 txmetcn C∞MetBaseSetUC∞MetBaseSetUC∞MetBaseSetUGJ×tJCnJG:BaseSetU×BaseSetUBaseSetUxBaseSetUyBaseSetUr+s+zBaseSetUwBaseSetUxCz<syCw<sxGyCzGw<r
68 66 66 66 67 syl3anc UNrmCVecGJ×tJCnJG:BaseSetU×BaseSetUBaseSetUxBaseSetUyBaseSetUr+s+zBaseSetUwBaseSetUxCz<syCw<sxGyCzGw<r
69 5 65 68 mpbir2and UNrmCVecGJ×tJCnJ