Metamath Proof Explorer


Theorem vietadeg1

Description: The degree of a product of H of linear polynomials of the form X - Z is H . (Contributed by Thierry Arnoux, 15-Feb-2026)

Ref Expression
Hypotheses vieta.w W = Poly 1 R
vieta.b B = Base R
vieta.3 - ˙ = - W
vieta.m M = mulGrp W
vieta.q Q = I eval R
vieta.e No typesetting found for |- E = ( I eSymPoly R ) with typecode |-
vieta.n N = inv g R
vieta.1 1 ˙ = 1 R
vieta.t · ˙ = R
vieta.x X = var 1 R
vieta.a A = algSc W
vieta.p × ˙ = mulGrp R
vieta.h H = I
vieta.i φ I Fin
vieta.r φ R IDomn
vieta.z φ Z : I B
vieta.f F = M n I X - ˙ A Z n
vietadeg1.1 D = deg 1 R
Assertion vietadeg1 φ D F = H

Proof

Step Hyp Ref Expression
1 vieta.w W = Poly 1 R
2 vieta.b B = Base R
3 vieta.3 - ˙ = - W
4 vieta.m M = mulGrp W
5 vieta.q Q = I eval R
6 vieta.e Could not format E = ( I eSymPoly R ) : No typesetting found for |- E = ( I eSymPoly R ) with typecode |-
7 vieta.n N = inv g R
8 vieta.1 1 ˙ = 1 R
9 vieta.t · ˙ = R
10 vieta.x X = var 1 R
11 vieta.a A = algSc W
12 vieta.p × ˙ = mulGrp R
13 vieta.h H = I
14 vieta.i φ I Fin
15 vieta.r φ R IDomn
16 vieta.z φ Z : I B
17 vieta.f F = M n I X - ˙ A Z n
18 vietadeg1.1 D = deg 1 R
19 17 fveq2i D F = D M n I X - ˙ A Z n
20 eqid Base W = Base W
21 eqid 0 W = 0 W
22 15 idomringd φ R Ring
23 1 ply1ring R Ring W Ring
24 ringgrp W Ring W Grp
25 22 23 24 3syl φ W Grp
26 25 adantr φ n I W Grp
27 10 1 20 vr1cl R Ring X Base W
28 22 27 syl φ X Base W
29 28 adantr φ n I X Base W
30 eqid Scalar W = Scalar W
31 eqid Base Scalar W = Base Scalar W
32 15 idomcringd φ R CRing
33 1 ply1assa R CRing W AssAlg
34 32 33 syl φ W AssAlg
35 34 adantr φ n I W AssAlg
36 16 ffvelcdmda φ n I Z n B
37 1 ply1sca R IDomn R = Scalar W
38 15 37 syl φ R = Scalar W
39 38 fveq2d φ Base R = Base Scalar W
40 2 39 eqtrid φ B = Base Scalar W
41 40 adantr φ n I B = Base Scalar W
42 36 41 eleqtrd φ n I Z n Base Scalar W
43 11 30 31 35 42 asclelbas φ n I A Z n Base W
44 20 3 26 29 43 grpsubcld φ n I X - ˙ A Z n Base W
45 15 idomdomd φ R Domn
46 domnnzr R Domn R NzRing
47 45 46 syl φ R NzRing
48 18 1 10 47 deg1vr φ D X = 1
49 48 ad2antrr φ n I X - ˙ A Z n = 0 W D X = 1
50 18 1 20 deg1cl X Base W D X 0 −∞
51 28 50 syl φ D X 0 −∞
52 51 nn0mnfxrd φ D X *
53 52 ad2antrr φ n I X - ˙ A Z n = 0 W D X *
54 49 53 eqeltrrd φ n I X - ˙ A Z n = 0 W 1 *
55 51 ad2antrr φ n I X - ˙ A Z n = 0 W D X 0 −∞
56 0zd φ n I X - ˙ A Z n = 0 W 0
57 26 adantr φ n I X - ˙ A Z n = 0 W W Grp
58 29 adantr φ n I X - ˙ A Z n = 0 W X Base W
59 43 adantr φ n I X - ˙ A Z n = 0 W A Z n Base W
60 simpr φ n I X - ˙ A Z n = 0 W X - ˙ A Z n = 0 W
61 20 21 3 grpsubeq0 W Grp X Base W A Z n Base W X - ˙ A Z n = 0 W X = A Z n
62 61 biimpa W Grp X Base W A Z n Base W X - ˙ A Z n = 0 W X = A Z n
63 57 58 59 60 62 syl31anc φ n I X - ˙ A Z n = 0 W X = A Z n
64 63 fveq2d φ n I X - ˙ A Z n = 0 W D X = D A Z n
65 22 adantr φ n I R Ring
66 18 1 2 11 deg1sclle R Ring Z n B D A Z n 0
67 65 36 66 syl2anc φ n I D A Z n 0
68 67 adantr φ n I X - ˙ A Z n = 0 W D A Z n 0
69 64 68 eqbrtrd φ n I X - ˙ A Z n = 0 W D X 0
70 degltp1le D X 0 −∞ 0 D X < 0 + 1 D X 0
71 70 biimpar D X 0 −∞ 0 D X 0 D X < 0 + 1
72 55 56 69 71 syl21anc φ n I X - ˙ A Z n = 0 W D X < 0 + 1
73 0p1e1 0 + 1 = 1
74 72 73 breqtrdi φ n I X - ˙ A Z n = 0 W D X < 1
75 53 54 74 xrgtned φ n I X - ˙ A Z n = 0 W 1 D X
76 75 necomd φ n I X - ˙ A Z n = 0 W D X 1
77 76 neneqd φ n I X - ˙ A Z n = 0 W ¬ D X = 1
78 49 77 pm2.65da φ n I ¬ X - ˙ A Z n = 0 W
79 78 neqned φ n I X - ˙ A Z n 0 W
80 44 79 eldifsnd φ n I X - ˙ A Z n Base W 0 W
81 80 fmpttd φ n I X - ˙ A Z n : I Base W 0 W
82 18 1 20 4 21 14 15 81 deg1prod φ D M n I X - ˙ A Z n = k I D n I X - ˙ A Z n k
83 eqid n I X - ˙ A Z n = n I X - ˙ A Z n
84 2fveq3 n = k A Z n = A Z k
85 84 oveq2d n = k X - ˙ A Z n = X - ˙ A Z k
86 simpr φ k I k I
87 ovexd φ k I X - ˙ A Z k V
88 83 85 86 87 fvmptd3 φ k I n I X - ˙ A Z n k = X - ˙ A Z k
89 88 fveq2d φ k I D n I X - ˙ A Z n k = D X - ˙ A Z k
90 18 1 20 deg1xrcl A Z n Base W D A Z n *
91 43 90 syl φ n I D A Z n *
92 0xr 0 *
93 92 a1i φ n I 0 *
94 1xr 1 *
95 94 a1i φ n I 1 *
96 0lt1 0 < 1
97 96 a1i φ n I 0 < 1
98 91 93 95 67 97 xrlelttrd φ n I D A Z n < 1
99 48 adantr φ n I D X = 1
100 98 99 breqtrrd φ n I D A Z n < D X
101 1 18 65 20 3 29 43 100 deg1sub φ n I D X - ˙ A Z n = D X
102 101 99 eqtrd φ n I D X - ˙ A Z n = 1
103 102 ralrimiva φ n I D X - ˙ A Z n = 1
104 85 fveqeq2d n = k D X - ˙ A Z n = 1 D X - ˙ A Z k = 1
105 104 cbvralvw n I D X - ˙ A Z n = 1 k I D X - ˙ A Z k = 1
106 103 105 sylib φ k I D X - ˙ A Z k = 1
107 106 r19.21bi φ k I D X - ˙ A Z k = 1
108 89 107 eqtrd φ k I D n I X - ˙ A Z n k = 1
109 108 sumeq2dv φ k I D n I X - ˙ A Z n k = k I 1
110 1cnd φ 1
111 fsumconst I Fin 1 k I 1 = I 1
112 14 110 111 syl2anc φ k I 1 = I 1
113 hashcl I Fin I 0
114 14 113 syl φ I 0
115 114 nn0cnd φ I
116 115 mulridd φ I 1 = I
117 116 13 eqtr4di φ I 1 = H
118 109 112 117 3eqtrd φ k I D n I X - ˙ A Z n k = H
119 82 118 eqtrd φ D M n I X - ˙ A Z n = H
120 19 119 eqtrid φ D F = H