Metamath Proof Explorer


Theorem vietalem

Description: Lemma for vieta : induction step. (Contributed by Thierry Arnoux, 15-Feb-2026)

Ref Expression
Hypotheses vieta.w W = Poly 1 R
vieta.b B = Base R
vieta.3 - ˙ = - W
vieta.m M = mulGrp W
vieta.q Q = I eval R
vieta.e No typesetting found for |- E = ( I eSymPoly R ) with typecode |-
vieta.n N = inv g R
vieta.1 1 ˙ = 1 R
vieta.t · ˙ = R
vieta.x X = var 1 R
vieta.a A = algSc W
vieta.p × ˙ = mulGrp R
vieta.h H = I
vieta.i φ I Fin
vieta.r φ R IDomn
vieta.z φ Z : I B
vieta.f F = M n I X - ˙ A Z n
vieta.k φ K 0 H
vietalem.y φ Y I
vietalem.j J = I Y
vietalem.2 No typesetting found for |- ( ph -> A. z e. ( B ^m J ) A. k e. ( 0 ... ( # ` J ) ) ( ( coe1 ` ( M gsum ( n e. J |-> ( X .- ( A ` ( z ` n ) ) ) ) ) ) ` ( ( # ` J ) - k ) ) = ( ( k .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` z ) ) ) with typecode |-
vietalem.3 φ deg 1 R M n J X - ˙ A Z J n = J
Assertion vietalem φ coe 1 F K = H K × ˙ N 1 ˙ · ˙ Q E H K Z

Proof

Step Hyp Ref Expression
1 vieta.w W = Poly 1 R
2 vieta.b B = Base R
3 vieta.3 - ˙ = - W
4 vieta.m M = mulGrp W
5 vieta.q Q = I eval R
6 vieta.e Could not format E = ( I eSymPoly R ) : No typesetting found for |- E = ( I eSymPoly R ) with typecode |-
7 vieta.n N = inv g R
8 vieta.1 1 ˙ = 1 R
9 vieta.t · ˙ = R
10 vieta.x X = var 1 R
11 vieta.a A = algSc W
12 vieta.p × ˙ = mulGrp R
13 vieta.h H = I
14 vieta.i φ I Fin
15 vieta.r φ R IDomn
16 vieta.z φ Z : I B
17 vieta.f F = M n I X - ˙ A Z n
18 vieta.k φ K 0 H
19 vietalem.y φ Y I
20 vietalem.j J = I Y
21 vietalem.2 Could not format ( ph -> A. z e. ( B ^m J ) A. k e. ( 0 ... ( # ` J ) ) ( ( coe1 ` ( M gsum ( n e. J |-> ( X .- ( A ` ( z ` n ) ) ) ) ) ) ` ( ( # ` J ) - k ) ) = ( ( k .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` z ) ) ) : No typesetting found for |- ( ph -> A. z e. ( B ^m J ) A. k e. ( 0 ... ( # ` J ) ) ( ( coe1 ` ( M gsum ( n e. J |-> ( X .- ( A ` ( z ` n ) ) ) ) ) ) ` ( ( # ` J ) - k ) ) = ( ( k .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` z ) ) ) with typecode |-
22 vietalem.3 φ deg 1 R M n J X - ˙ A Z J n = J
23 17 a1i φ F = M n I X - ˙ A Z n
24 20 uneq1i J Y = I Y Y
25 19 snssd φ Y I
26 undifr Y I I Y Y = I
27 25 26 sylib φ I Y Y = I
28 24 27 eqtr2id φ I = J Y
29 28 mpteq1d φ n I X - ˙ A Z n = n J Y X - ˙ A Z n
30 29 oveq2d φ M n I X - ˙ A Z n = M n J Y X - ˙ A Z n
31 eqid Base W = Base W
32 4 31 mgpbas Base W = Base M
33 eqid W = W
34 4 33 mgpplusg W = + M
35 15 idomcringd φ R CRing
36 1 ply1crng R CRing W CRing
37 4 crngmgp W CRing M CMnd
38 35 36 37 3syl φ M CMnd
39 diffi I Fin I Y Fin
40 14 39 syl φ I Y Fin
41 20 40 eqeltrid φ J Fin
42 35 36 syl φ W CRing
43 42 crngringd φ W Ring
44 43 ringgrpd φ W Grp
45 44 adantr φ n J W Grp
46 15 idomringd φ R Ring
47 10 1 31 vr1cl R Ring X Base W
48 46 47 syl φ X Base W
49 48 adantr φ n J X Base W
50 eqid Scalar W = Scalar W
51 eqid Base Scalar W = Base Scalar W
52 1 ply1assa R CRing W AssAlg
53 35 52 syl φ W AssAlg
54 53 adantr φ n J W AssAlg
55 16 adantr φ n J Z : I B
56 difss I Y I
57 20 56 eqsstri J I
58 57 a1i φ J I
59 58 sselda φ n J n I
60 55 59 ffvelcdmd φ n J Z n B
61 1 ply1sca R CRing R = Scalar W
62 35 61 syl φ R = Scalar W
63 62 fveq2d φ Base R = Base Scalar W
64 2 63 eqtrid φ B = Base Scalar W
65 64 adantr φ n J B = Base Scalar W
66 60 65 eleqtrd φ n J Z n Base Scalar W
67 11 50 51 54 66 asclelbas φ n J A Z n Base W
68 31 3 45 49 67 grpsubcld φ n J X - ˙ A Z n Base W
69 neldifsnd φ ¬ Y I Y
70 20 eleq2i Y J Y I Y
71 69 70 sylnibr φ ¬ Y J
72 64 16 feq3dd φ Z : I Base Scalar W
73 72 19 ffvelcdmd φ Z Y Base Scalar W
74 11 50 51 53 73 asclelbas φ A Z Y Base W
75 31 3 44 48 74 grpsubcld φ X - ˙ A Z Y Base W
76 2fveq3 n = Y A Z n = A Z Y
77 76 oveq2d n = Y X - ˙ A Z n = X - ˙ A Z Y
78 32 34 38 41 68 19 71 75 77 gsumunsn φ M n J Y X - ˙ A Z n = M n J X - ˙ A Z n W X - ˙ A Z Y
79 23 30 78 3eqtrd φ F = M n J X - ˙ A Z n W X - ˙ A Z Y
80 eqid W = W
81 eqid M = M
82 eqid coe 1 M n J X - ˙ A Z J n = coe 1 M n J X - ˙ A Z J n
83 eqid deg 1 R M n J X - ˙ A Z J n = deg 1 R M n J X - ˙ A Z J n
84 simpr φ n J n J
85 84 fvresd φ n J Z J n = Z n
86 85 fveq2d φ n J A Z J n = A Z n
87 86 oveq2d φ n J X - ˙ A Z J n = X - ˙ A Z n
88 87 mpteq2dva φ n J X - ˙ A Z J n = n J X - ˙ A Z n
89 88 oveq2d φ M n J X - ˙ A Z J n = M n J X - ˙ A Z n
90 68 ralrimiva φ n J X - ˙ A Z n Base W
91 32 38 41 90 gsummptcl φ M n J X - ˙ A Z n Base W
92 89 91 eqeltrd φ M n J X - ˙ A Z J n Base W
93 1 10 31 80 4 81 82 83 46 92 ply1coedeg φ M n J X - ˙ A Z J n = W l = 0 deg 1 R M n J X - ˙ A Z J n coe 1 M n J X - ˙ A Z J n l W l M X
94 22 oveq2d φ 0 deg 1 R M n J X - ˙ A Z J n = 0 J
95 94 mpteq1d φ l 0 deg 1 R M n J X - ˙ A Z J n coe 1 M n J X - ˙ A Z J n l W l M X = l 0 J coe 1 M n J X - ˙ A Z J n l W l M X
96 95 oveq2d φ W l = 0 deg 1 R M n J X - ˙ A Z J n coe 1 M n J X - ˙ A Z J n l W l M X = W l = 0 J coe 1 M n J X - ˙ A Z J n l W l M X
97 93 89 96 3eqtr3d φ M n J X - ˙ A Z n = W l = 0 J coe 1 M n J X - ˙ A Z J n l W l M X
98 43 ringcmnd φ W CMnd
99 hashcl J Fin J 0
100 41 99 syl φ J 0
101 1 ply1lmod R Ring W LMod
102 46 101 syl φ W LMod
103 102 adantr φ l 0 J W LMod
104 92 adantr φ l 0 J M n J X - ˙ A Z J n Base W
105 62 fveq2d φ Poly 1 R = Poly 1 Scalar W
106 1 105 eqtrid φ W = Poly 1 Scalar W
107 106 fveq2d φ Base W = Base Poly 1 Scalar W
108 107 adantr φ l 0 J Base W = Base Poly 1 Scalar W
109 104 108 eleqtrd φ l 0 J M n J X - ˙ A Z J n Base Poly 1 Scalar W
110 fz0ssnn0 0 J 0
111 simpr φ l 0 J l 0 J
112 110 111 sselid φ l 0 J l 0
113 eqid Base Poly 1 Scalar W = Base Poly 1 Scalar W
114 eqid Poly 1 Scalar W = Poly 1 Scalar W
115 82 113 114 51 coe1fvalcl M n J X - ˙ A Z J n Base Poly 1 Scalar W l 0 coe 1 M n J X - ˙ A Z J n l Base Scalar W
116 109 112 115 syl2anc φ l 0 J coe 1 M n J X - ˙ A Z J n l Base Scalar W
117 38 cmnmndd φ M Mnd
118 117 adantr φ l 0 J M Mnd
119 46 adantr φ l 0 J R Ring
120 119 47 syl φ l 0 J X Base W
121 32 81 118 112 120 mulgnn0cld φ l 0 J l M X Base W
122 31 50 80 51 103 116 121 lmodvscld φ l 0 J coe 1 M n J X - ˙ A Z J n l W l M X Base W
123 simpr φ k 0 J l = J k l = J k
124 123 fveq2d φ k 0 J l = J k coe 1 M n J X - ˙ A Z J n l = coe 1 M n J X - ˙ A Z J n J k
125 oveq1 l = J k l M X = J k M X
126 125 adantl φ k 0 J l = J k l M X = J k M X
127 124 126 oveq12d φ k 0 J l = J k coe 1 M n J X - ˙ A Z J n l W l M X = coe 1 M n J X - ˙ A Z J n J k W J k M X
128 31 98 100 122 127 gsummptrev φ W l = 0 J coe 1 M n J X - ˙ A Z J n l W l M X = W k = 0 J coe 1 M n J X - ˙ A Z J n J k W J k M X
129 fveq1 z = Z J z n = Z J n
130 129 fveq2d z = Z J A z n = A Z J n
131 130 oveq2d z = Z J X - ˙ A z n = X - ˙ A Z J n
132 131 mpteq2dv z = Z J n J X - ˙ A z n = n J X - ˙ A Z J n
133 132 oveq2d z = Z J M n J X - ˙ A z n = M n J X - ˙ A Z J n
134 133 fveq2d z = Z J coe 1 M n J X - ˙ A z n = coe 1 M n J X - ˙ A Z J n
135 134 fveq1d z = Z J coe 1 M n J X - ˙ A z n J k = coe 1 M n J X - ˙ A Z J n J k
136 fveq2 Could not format ( z = ( Z |` J ) -> ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` z ) = ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) ) : No typesetting found for |- ( z = ( Z |` J ) -> ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` z ) = ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) ) with typecode |-
137 136 oveq2d Could not format ( z = ( Z |` J ) -> ( ( k .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` z ) ) = ( ( k .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) ) ) : No typesetting found for |- ( z = ( Z |` J ) -> ( ( k .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` z ) ) = ( ( k .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) ) ) with typecode |-
138 135 137 eqeq12d Could not format ( z = ( Z |` J ) -> ( ( ( coe1 ` ( M gsum ( n e. J |-> ( X .- ( A ` ( z ` n ) ) ) ) ) ) ` ( ( # ` J ) - k ) ) = ( ( k .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` z ) ) <-> ( ( coe1 ` ( M gsum ( n e. J |-> ( X .- ( A ` ( ( Z |` J ) ` n ) ) ) ) ) ) ` ( ( # ` J ) - k ) ) = ( ( k .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) ) ) ) : No typesetting found for |- ( z = ( Z |` J ) -> ( ( ( coe1 ` ( M gsum ( n e. J |-> ( X .- ( A ` ( z ` n ) ) ) ) ) ) ` ( ( # ` J ) - k ) ) = ( ( k .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` z ) ) <-> ( ( coe1 ` ( M gsum ( n e. J |-> ( X .- ( A ` ( ( Z |` J ) ` n ) ) ) ) ) ) ` ( ( # ` J ) - k ) ) = ( ( k .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) ) ) ) with typecode |-
139 138 ralbidv Could not format ( z = ( Z |` J ) -> ( A. k e. ( 0 ... ( # ` J ) ) ( ( coe1 ` ( M gsum ( n e. J |-> ( X .- ( A ` ( z ` n ) ) ) ) ) ) ` ( ( # ` J ) - k ) ) = ( ( k .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` z ) ) <-> A. k e. ( 0 ... ( # ` J ) ) ( ( coe1 ` ( M gsum ( n e. J |-> ( X .- ( A ` ( ( Z |` J ) ` n ) ) ) ) ) ) ` ( ( # ` J ) - k ) ) = ( ( k .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) ) ) ) : No typesetting found for |- ( z = ( Z |` J ) -> ( A. k e. ( 0 ... ( # ` J ) ) ( ( coe1 ` ( M gsum ( n e. J |-> ( X .- ( A ` ( z ` n ) ) ) ) ) ) ` ( ( # ` J ) - k ) ) = ( ( k .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` z ) ) <-> A. k e. ( 0 ... ( # ` J ) ) ( ( coe1 ` ( M gsum ( n e. J |-> ( X .- ( A ` ( ( Z |` J ) ` n ) ) ) ) ) ) ` ( ( # ` J ) - k ) ) = ( ( k .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) ) ) ) with typecode |-
140 2 fvexi B V
141 140 a1i φ B V
142 16 58 fssresd φ Z J : J B
143 141 41 142 elmapdd φ Z J B J
144 139 21 143 rspcdva Could not format ( ph -> A. k e. ( 0 ... ( # ` J ) ) ( ( coe1 ` ( M gsum ( n e. J |-> ( X .- ( A ` ( ( Z |` J ) ` n ) ) ) ) ) ) ` ( ( # ` J ) - k ) ) = ( ( k .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) ) ) : No typesetting found for |- ( ph -> A. k e. ( 0 ... ( # ` J ) ) ( ( coe1 ` ( M gsum ( n e. J |-> ( X .- ( A ` ( ( Z |` J ) ` n ) ) ) ) ) ) ` ( ( # ` J ) - k ) ) = ( ( k .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) ) ) with typecode |-
145 144 r19.21bi Could not format ( ( ph /\ k e. ( 0 ... ( # ` J ) ) ) -> ( ( coe1 ` ( M gsum ( n e. J |-> ( X .- ( A ` ( ( Z |` J ) ` n ) ) ) ) ) ) ` ( ( # ` J ) - k ) ) = ( ( k .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) ) ) : No typesetting found for |- ( ( ph /\ k e. ( 0 ... ( # ` J ) ) ) -> ( ( coe1 ` ( M gsum ( n e. J |-> ( X .- ( A ` ( ( Z |` J ) ` n ) ) ) ) ) ) ` ( ( # ` J ) - k ) ) = ( ( k .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) ) ) with typecode |-
146 145 oveq1d Could not format ( ( ph /\ k e. ( 0 ... ( # ` J ) ) ) -> ( ( ( coe1 ` ( M gsum ( n e. J |-> ( X .- ( A ` ( ( Z |` J ) ` n ) ) ) ) ) ) ` ( ( # ` J ) - k ) ) ( .s ` W ) ( ( ( # ` J ) - k ) ( .g ` M ) X ) ) = ( ( ( k .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) ) ( .s ` W ) ( ( ( # ` J ) - k ) ( .g ` M ) X ) ) ) : No typesetting found for |- ( ( ph /\ k e. ( 0 ... ( # ` J ) ) ) -> ( ( ( coe1 ` ( M gsum ( n e. J |-> ( X .- ( A ` ( ( Z |` J ) ` n ) ) ) ) ) ) ` ( ( # ` J ) - k ) ) ( .s ` W ) ( ( ( # ` J ) - k ) ( .g ` M ) X ) ) = ( ( ( k .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) ) ( .s ` W ) ( ( ( # ` J ) - k ) ( .g ` M ) X ) ) ) with typecode |-
147 146 mpteq2dva Could not format ( ph -> ( k e. ( 0 ... ( # ` J ) ) |-> ( ( ( coe1 ` ( M gsum ( n e. J |-> ( X .- ( A ` ( ( Z |` J ) ` n ) ) ) ) ) ) ` ( ( # ` J ) - k ) ) ( .s ` W ) ( ( ( # ` J ) - k ) ( .g ` M ) X ) ) ) = ( k e. ( 0 ... ( # ` J ) ) |-> ( ( ( k .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) ) ( .s ` W ) ( ( ( # ` J ) - k ) ( .g ` M ) X ) ) ) ) : No typesetting found for |- ( ph -> ( k e. ( 0 ... ( # ` J ) ) |-> ( ( ( coe1 ` ( M gsum ( n e. J |-> ( X .- ( A ` ( ( Z |` J ) ` n ) ) ) ) ) ) ` ( ( # ` J ) - k ) ) ( .s ` W ) ( ( ( # ` J ) - k ) ( .g ` M ) X ) ) ) = ( k e. ( 0 ... ( # ` J ) ) |-> ( ( ( k .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) ) ( .s ` W ) ( ( ( # ` J ) - k ) ( .g ` M ) X ) ) ) ) with typecode |-
148 147 oveq2d Could not format ( ph -> ( W gsum ( k e. ( 0 ... ( # ` J ) ) |-> ( ( ( coe1 ` ( M gsum ( n e. J |-> ( X .- ( A ` ( ( Z |` J ) ` n ) ) ) ) ) ) ` ( ( # ` J ) - k ) ) ( .s ` W ) ( ( ( # ` J ) - k ) ( .g ` M ) X ) ) ) ) = ( W gsum ( k e. ( 0 ... ( # ` J ) ) |-> ( ( ( k .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) ) ( .s ` W ) ( ( ( # ` J ) - k ) ( .g ` M ) X ) ) ) ) ) : No typesetting found for |- ( ph -> ( W gsum ( k e. ( 0 ... ( # ` J ) ) |-> ( ( ( coe1 ` ( M gsum ( n e. J |-> ( X .- ( A ` ( ( Z |` J ) ` n ) ) ) ) ) ) ` ( ( # ` J ) - k ) ) ( .s ` W ) ( ( ( # ` J ) - k ) ( .g ` M ) X ) ) ) ) = ( W gsum ( k e. ( 0 ... ( # ` J ) ) |-> ( ( ( k .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) ) ( .s ` W ) ( ( ( # ` J ) - k ) ( .g ` M ) X ) ) ) ) ) with typecode |-
149 eqid mulGrp R = mulGrp R
150 149 2 mgpbas B = Base mulGrp R
151 149 ringmgp R Ring mulGrp R Mnd
152 119 151 syl φ l 0 J mulGrp R Mnd
153 fznn0sub2 l 0 J J l 0 J
154 153 adantl φ l 0 J J l 0 J
155 110 154 sselid φ l 0 J J l 0
156 46 ringgrpd φ R Grp
157 2 8 46 ringidcld φ 1 ˙ B
158 2 7 156 157 grpinvcld φ N 1 ˙ B
159 158 adantr φ l 0 J N 1 ˙ B
160 150 12 152 155 159 mulgnn0cld φ l 0 J J l × ˙ N 1 ˙ B
161 eqid J eval R = J eval R
162 eqid J mPoly R = J mPoly R
163 eqid Base J mPoly R = Base J mPoly R
164 41 adantr φ l 0 J J Fin
165 35 adantr φ l 0 J R CRing
166 eqid h 0 J | finSupp 0 h = h 0 J | finSupp 0 h
167 166 164 119 155 163 esplympl Could not format ( ( ph /\ l e. ( 0 ... ( # ` J ) ) ) -> ( ( J eSymPoly R ) ` ( ( # ` J ) - l ) ) e. ( Base ` ( J mPoly R ) ) ) : No typesetting found for |- ( ( ph /\ l e. ( 0 ... ( # ` J ) ) ) -> ( ( J eSymPoly R ) ` ( ( # ` J ) - l ) ) e. ( Base ` ( J mPoly R ) ) ) with typecode |-
168 143 adantr φ l 0 J Z J B J
169 161 162 163 2 164 165 167 168 evlcl Could not format ( ( ph /\ l e. ( 0 ... ( # ` J ) ) ) -> ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( ( # ` J ) - l ) ) ) ` ( Z |` J ) ) e. B ) : No typesetting found for |- ( ( ph /\ l e. ( 0 ... ( # ` J ) ) ) -> ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( ( # ` J ) - l ) ) ) ` ( Z |` J ) ) e. B ) with typecode |-
170 2 9 119 160 169 ringcld Could not format ( ( ph /\ l e. ( 0 ... ( # ` J ) ) ) -> ( ( ( ( # ` J ) - l ) .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( ( # ` J ) - l ) ) ) ` ( Z |` J ) ) ) e. B ) : No typesetting found for |- ( ( ph /\ l e. ( 0 ... ( # ` J ) ) ) -> ( ( ( ( # ` J ) - l ) .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( ( # ` J ) - l ) ) ) ` ( Z |` J ) ) ) e. B ) with typecode |-
171 1 31 2 80 119 170 121 ply1vscl Could not format ( ( ph /\ l e. ( 0 ... ( # ` J ) ) ) -> ( ( ( ( ( # ` J ) - l ) .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( ( # ` J ) - l ) ) ) ` ( Z |` J ) ) ) ( .s ` W ) ( l ( .g ` M ) X ) ) e. ( Base ` W ) ) : No typesetting found for |- ( ( ph /\ l e. ( 0 ... ( # ` J ) ) ) -> ( ( ( ( ( # ` J ) - l ) .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( ( # ` J ) - l ) ) ) ` ( Z |` J ) ) ) ( .s ` W ) ( l ( .g ` M ) X ) ) e. ( Base ` W ) ) with typecode |-
172 100 nn0cnd φ J
173 172 ad2antrr φ k 0 J l = J k J
174 simplr φ k 0 J l = J k k 0 J
175 110 174 sselid φ k 0 J l = J k k 0
176 175 nn0cnd φ k 0 J l = J k k
177 173 176 subcld φ k 0 J l = J k J k
178 123 177 eqeltrd φ k 0 J l = J k l
179 173 178 subcld φ k 0 J l = J k J l
180 173 178 nncand φ k 0 J l = J k J J l = l
181 180 123 eqtrd φ k 0 J l = J k J J l = J k
182 173 179 176 181 subcand φ k 0 J l = J k J l = k
183 182 oveq1d φ k 0 J l = J k J l × ˙ N 1 ˙ = k × ˙ N 1 ˙
184 182 fveq2d Could not format ( ( ( ph /\ k e. ( 0 ... ( # ` J ) ) ) /\ l = ( ( # ` J ) - k ) ) -> ( ( J eSymPoly R ) ` ( ( # ` J ) - l ) ) = ( ( J eSymPoly R ) ` k ) ) : No typesetting found for |- ( ( ( ph /\ k e. ( 0 ... ( # ` J ) ) ) /\ l = ( ( # ` J ) - k ) ) -> ( ( J eSymPoly R ) ` ( ( # ` J ) - l ) ) = ( ( J eSymPoly R ) ` k ) ) with typecode |-
185 184 fveq2d Could not format ( ( ( ph /\ k e. ( 0 ... ( # ` J ) ) ) /\ l = ( ( # ` J ) - k ) ) -> ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( ( # ` J ) - l ) ) ) = ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ) : No typesetting found for |- ( ( ( ph /\ k e. ( 0 ... ( # ` J ) ) ) /\ l = ( ( # ` J ) - k ) ) -> ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( ( # ` J ) - l ) ) ) = ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ) with typecode |-
186 185 fveq1d Could not format ( ( ( ph /\ k e. ( 0 ... ( # ` J ) ) ) /\ l = ( ( # ` J ) - k ) ) -> ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( ( # ` J ) - l ) ) ) ` ( Z |` J ) ) = ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) ) : No typesetting found for |- ( ( ( ph /\ k e. ( 0 ... ( # ` J ) ) ) /\ l = ( ( # ` J ) - k ) ) -> ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( ( # ` J ) - l ) ) ) ` ( Z |` J ) ) = ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) ) with typecode |-
187 183 186 oveq12d Could not format ( ( ( ph /\ k e. ( 0 ... ( # ` J ) ) ) /\ l = ( ( # ` J ) - k ) ) -> ( ( ( ( # ` J ) - l ) .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( ( # ` J ) - l ) ) ) ` ( Z |` J ) ) ) = ( ( k .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) ) ) : No typesetting found for |- ( ( ( ph /\ k e. ( 0 ... ( # ` J ) ) ) /\ l = ( ( # ` J ) - k ) ) -> ( ( ( ( # ` J ) - l ) .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( ( # ` J ) - l ) ) ) ` ( Z |` J ) ) ) = ( ( k .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) ) ) with typecode |-
188 187 126 oveq12d Could not format ( ( ( ph /\ k e. ( 0 ... ( # ` J ) ) ) /\ l = ( ( # ` J ) - k ) ) -> ( ( ( ( ( # ` J ) - l ) .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( ( # ` J ) - l ) ) ) ` ( Z |` J ) ) ) ( .s ` W ) ( l ( .g ` M ) X ) ) = ( ( ( k .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) ) ( .s ` W ) ( ( ( # ` J ) - k ) ( .g ` M ) X ) ) ) : No typesetting found for |- ( ( ( ph /\ k e. ( 0 ... ( # ` J ) ) ) /\ l = ( ( # ` J ) - k ) ) -> ( ( ( ( ( # ` J ) - l ) .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( ( # ` J ) - l ) ) ) ` ( Z |` J ) ) ) ( .s ` W ) ( l ( .g ` M ) X ) ) = ( ( ( k .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) ) ( .s ` W ) ( ( ( # ` J ) - k ) ( .g ` M ) X ) ) ) with typecode |-
189 31 98 100 171 188 gsummptrev Could not format ( ph -> ( W gsum ( l e. ( 0 ... ( # ` J ) ) |-> ( ( ( ( ( # ` J ) - l ) .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( ( # ` J ) - l ) ) ) ` ( Z |` J ) ) ) ( .s ` W ) ( l ( .g ` M ) X ) ) ) ) = ( W gsum ( k e. ( 0 ... ( # ` J ) ) |-> ( ( ( k .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) ) ( .s ` W ) ( ( ( # ` J ) - k ) ( .g ` M ) X ) ) ) ) ) : No typesetting found for |- ( ph -> ( W gsum ( l e. ( 0 ... ( # ` J ) ) |-> ( ( ( ( ( # ` J ) - l ) .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( ( # ` J ) - l ) ) ) ` ( Z |` J ) ) ) ( .s ` W ) ( l ( .g ` M ) X ) ) ) ) = ( W gsum ( k e. ( 0 ... ( # ` J ) ) |-> ( ( ( k .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) ) ( .s ` W ) ( ( ( # ` J ) - k ) ( .g ` M ) X ) ) ) ) ) with typecode |-
190 148 189 eqtr4d Could not format ( ph -> ( W gsum ( k e. ( 0 ... ( # ` J ) ) |-> ( ( ( coe1 ` ( M gsum ( n e. J |-> ( X .- ( A ` ( ( Z |` J ) ` n ) ) ) ) ) ) ` ( ( # ` J ) - k ) ) ( .s ` W ) ( ( ( # ` J ) - k ) ( .g ` M ) X ) ) ) ) = ( W gsum ( l e. ( 0 ... ( # ` J ) ) |-> ( ( ( ( ( # ` J ) - l ) .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( ( # ` J ) - l ) ) ) ` ( Z |` J ) ) ) ( .s ` W ) ( l ( .g ` M ) X ) ) ) ) ) : No typesetting found for |- ( ph -> ( W gsum ( k e. ( 0 ... ( # ` J ) ) |-> ( ( ( coe1 ` ( M gsum ( n e. J |-> ( X .- ( A ` ( ( Z |` J ) ` n ) ) ) ) ) ) ` ( ( # ` J ) - k ) ) ( .s ` W ) ( ( ( # ` J ) - k ) ( .g ` M ) X ) ) ) ) = ( W gsum ( l e. ( 0 ... ( # ` J ) ) |-> ( ( ( ( ( # ` J ) - l ) .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( ( # ` J ) - l ) ) ) ` ( Z |` J ) ) ) ( .s ` W ) ( l ( .g ` M ) X ) ) ) ) ) with typecode |-
191 97 128 190 3eqtrd Could not format ( ph -> ( M gsum ( n e. J |-> ( X .- ( A ` ( Z ` n ) ) ) ) ) = ( W gsum ( l e. ( 0 ... ( # ` J ) ) |-> ( ( ( ( ( # ` J ) - l ) .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( ( # ` J ) - l ) ) ) ` ( Z |` J ) ) ) ( .s ` W ) ( l ( .g ` M ) X ) ) ) ) ) : No typesetting found for |- ( ph -> ( M gsum ( n e. J |-> ( X .- ( A ` ( Z ` n ) ) ) ) ) = ( W gsum ( l e. ( 0 ... ( # ` J ) ) |-> ( ( ( ( ( # ` J ) - l ) .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( ( # ` J ) - l ) ) ) ` ( Z |` J ) ) ) ( .s ` W ) ( l ( .g ` M ) X ) ) ) ) ) with typecode |-
192 191 oveq1d Could not format ( ph -> ( ( M gsum ( n e. J |-> ( X .- ( A ` ( Z ` n ) ) ) ) ) ( .r ` W ) ( X .- ( A ` ( Z ` Y ) ) ) ) = ( ( W gsum ( l e. ( 0 ... ( # ` J ) ) |-> ( ( ( ( ( # ` J ) - l ) .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( ( # ` J ) - l ) ) ) ` ( Z |` J ) ) ) ( .s ` W ) ( l ( .g ` M ) X ) ) ) ) ( .r ` W ) ( X .- ( A ` ( Z ` Y ) ) ) ) ) : No typesetting found for |- ( ph -> ( ( M gsum ( n e. J |-> ( X .- ( A ` ( Z ` n ) ) ) ) ) ( .r ` W ) ( X .- ( A ` ( Z ` Y ) ) ) ) = ( ( W gsum ( l e. ( 0 ... ( # ` J ) ) |-> ( ( ( ( ( # ` J ) - l ) .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( ( # ` J ) - l ) ) ) ` ( Z |` J ) ) ) ( .s ` W ) ( l ( .g ` M ) X ) ) ) ) ( .r ` W ) ( X .- ( A ` ( Z ` Y ) ) ) ) ) with typecode |-
193 eqid + W = + W
194 46 adantr φ i 0 J R Ring
195 194 151 syl φ i 0 J mulGrp R Mnd
196 elfznn0 i 0 J i 0
197 196 adantl φ i 0 J i 0
198 158 adantr φ i 0 J N 1 ˙ B
199 150 12 195 197 198 mulgnn0cld φ i 0 J i × ˙ N 1 ˙ B
200 41 adantr φ i 0 J J Fin
201 35 adantr φ i 0 J R CRing
202 166 200 194 197 163 esplympl Could not format ( ( ph /\ i e. ( 0 ... ( # ` J ) ) ) -> ( ( J eSymPoly R ) ` i ) e. ( Base ` ( J mPoly R ) ) ) : No typesetting found for |- ( ( ph /\ i e. ( 0 ... ( # ` J ) ) ) -> ( ( J eSymPoly R ) ` i ) e. ( Base ` ( J mPoly R ) ) ) with typecode |-
203 143 adantr φ i 0 J Z J B J
204 161 162 163 2 200 201 202 203 evlcl Could not format ( ( ph /\ i e. ( 0 ... ( # ` J ) ) ) -> ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` i ) ) ` ( Z |` J ) ) e. B ) : No typesetting found for |- ( ( ph /\ i e. ( 0 ... ( # ` J ) ) ) -> ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` i ) ) ` ( Z |` J ) ) e. B ) with typecode |-
205 2 9 194 199 204 ringcld Could not format ( ( ph /\ i e. ( 0 ... ( # ` J ) ) ) -> ( ( i .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` i ) ) ` ( Z |` J ) ) ) e. B ) : No typesetting found for |- ( ( ph /\ i e. ( 0 ... ( # ` J ) ) ) -> ( ( i .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` i ) ) ` ( Z |` J ) ) ) e. B ) with typecode |-
206 117 adantr φ i 0 J M Mnd
207 fznn0sub2 i 0 J J i 0 J
208 207 adantl φ i 0 J J i 0 J
209 110 208 sselid φ i 0 J J i 0
210 48 adantr φ i 0 J X Base W
211 32 81 206 209 210 mulgnn0cld φ i 0 J J i M X Base W
212 1 31 2 80 194 205 211 ply1vscl Could not format ( ( ph /\ i e. ( 0 ... ( # ` J ) ) ) -> ( ( ( i .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` i ) ) ` ( Z |` J ) ) ) ( .s ` W ) ( ( ( # ` J ) - i ) ( .g ` M ) X ) ) e. ( Base ` W ) ) : No typesetting found for |- ( ( ph /\ i e. ( 0 ... ( # ` J ) ) ) -> ( ( ( i .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` i ) ) ` ( Z |` J ) ) ) ( .s ` W ) ( ( ( # ` J ) - i ) ( .g ` M ) X ) ) e. ( Base ` W ) ) with typecode |-
213 oveq1 i = 0 i × ˙ N 1 ˙ = 0 × ˙ N 1 ˙
214 2fveq3 Could not format ( i = 0 -> ( ( J eval R ) ` ( ( J eSymPoly R ) ` i ) ) = ( ( J eval R ) ` ( ( J eSymPoly R ) ` 0 ) ) ) : No typesetting found for |- ( i = 0 -> ( ( J eval R ) ` ( ( J eSymPoly R ) ` i ) ) = ( ( J eval R ) ` ( ( J eSymPoly R ) ` 0 ) ) ) with typecode |-
215 214 fveq1d Could not format ( i = 0 -> ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` i ) ) ` ( Z |` J ) ) = ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` 0 ) ) ` ( Z |` J ) ) ) : No typesetting found for |- ( i = 0 -> ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` i ) ) ` ( Z |` J ) ) = ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` 0 ) ) ` ( Z |` J ) ) ) with typecode |-
216 213 215 oveq12d Could not format ( i = 0 -> ( ( i .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` i ) ) ` ( Z |` J ) ) ) = ( ( 0 .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` 0 ) ) ` ( Z |` J ) ) ) ) : No typesetting found for |- ( i = 0 -> ( ( i .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` i ) ) ` ( Z |` J ) ) ) = ( ( 0 .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` 0 ) ) ` ( Z |` J ) ) ) ) with typecode |-
217 oveq2 i = 0 J i = J 0
218 217 oveq1d i = 0 J i M X = J 0 M X
219 216 218 oveq12d Could not format ( i = 0 -> ( ( ( i .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` i ) ) ` ( Z |` J ) ) ) ( .s ` W ) ( ( ( # ` J ) - i ) ( .g ` M ) X ) ) = ( ( ( 0 .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` 0 ) ) ` ( Z |` J ) ) ) ( .s ` W ) ( ( ( # ` J ) - 0 ) ( .g ` M ) X ) ) ) : No typesetting found for |- ( i = 0 -> ( ( ( i .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` i ) ) ` ( Z |` J ) ) ) ( .s ` W ) ( ( ( # ` J ) - i ) ( .g ` M ) X ) ) = ( ( ( 0 .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` 0 ) ) ` ( Z |` J ) ) ) ( .s ` W ) ( ( ( # ` J ) - 0 ) ( .g ` M ) X ) ) ) with typecode |-
220 oveq1 i = J i × ˙ N 1 ˙ = J × ˙ N 1 ˙
221 2fveq3 Could not format ( i = ( # ` J ) -> ( ( J eval R ) ` ( ( J eSymPoly R ) ` i ) ) = ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( # ` J ) ) ) ) : No typesetting found for |- ( i = ( # ` J ) -> ( ( J eval R ) ` ( ( J eSymPoly R ) ` i ) ) = ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( # ` J ) ) ) ) with typecode |-
222 221 fveq1d Could not format ( i = ( # ` J ) -> ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` i ) ) ` ( Z |` J ) ) = ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( # ` J ) ) ) ` ( Z |` J ) ) ) : No typesetting found for |- ( i = ( # ` J ) -> ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` i ) ) ` ( Z |` J ) ) = ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( # ` J ) ) ) ` ( Z |` J ) ) ) with typecode |-
223 220 222 oveq12d Could not format ( i = ( # ` J ) -> ( ( i .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` i ) ) ` ( Z |` J ) ) ) = ( ( ( # ` J ) .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( # ` J ) ) ) ` ( Z |` J ) ) ) ) : No typesetting found for |- ( i = ( # ` J ) -> ( ( i .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` i ) ) ` ( Z |` J ) ) ) = ( ( ( # ` J ) .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( # ` J ) ) ) ` ( Z |` J ) ) ) ) with typecode |-
224 oveq2 i = J J i = J J
225 224 oveq1d i = J J i M X = J J M X
226 223 225 oveq12d Could not format ( i = ( # ` J ) -> ( ( ( i .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` i ) ) ` ( Z |` J ) ) ) ( .s ` W ) ( ( ( # ` J ) - i ) ( .g ` M ) X ) ) = ( ( ( ( # ` J ) .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( # ` J ) ) ) ` ( Z |` J ) ) ) ( .s ` W ) ( ( ( # ` J ) - ( # ` J ) ) ( .g ` M ) X ) ) ) : No typesetting found for |- ( i = ( # ` J ) -> ( ( ( i .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` i ) ) ` ( Z |` J ) ) ) ( .s ` W ) ( ( ( # ` J ) - i ) ( .g ` M ) X ) ) = ( ( ( ( # ` J ) .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( # ` J ) ) ) ` ( Z |` J ) ) ) ( .s ` W ) ( ( ( # ` J ) - ( # ` J ) ) ( .g ` M ) X ) ) ) with typecode |-
227 oveq1 i = k i × ˙ N 1 ˙ = k × ˙ N 1 ˙
228 2fveq3 Could not format ( i = k -> ( ( J eval R ) ` ( ( J eSymPoly R ) ` i ) ) = ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ) : No typesetting found for |- ( i = k -> ( ( J eval R ) ` ( ( J eSymPoly R ) ` i ) ) = ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ) with typecode |-
229 228 fveq1d Could not format ( i = k -> ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` i ) ) ` ( Z |` J ) ) = ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) ) : No typesetting found for |- ( i = k -> ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` i ) ) ` ( Z |` J ) ) = ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) ) with typecode |-
230 227 229 oveq12d Could not format ( i = k -> ( ( i .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` i ) ) ` ( Z |` J ) ) ) = ( ( k .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) ) ) : No typesetting found for |- ( i = k -> ( ( i .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` i ) ) ` ( Z |` J ) ) ) = ( ( k .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) ) ) with typecode |-
231 oveq2 i = k J i = J k
232 231 oveq1d i = k J i M X = J k M X
233 230 232 oveq12d Could not format ( i = k -> ( ( ( i .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` i ) ) ` ( Z |` J ) ) ) ( .s ` W ) ( ( ( # ` J ) - i ) ( .g ` M ) X ) ) = ( ( ( k .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) ) ( .s ` W ) ( ( ( # ` J ) - k ) ( .g ` M ) X ) ) ) : No typesetting found for |- ( i = k -> ( ( ( i .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` i ) ) ` ( Z |` J ) ) ) ( .s ` W ) ( ( ( # ` J ) - i ) ( .g ` M ) X ) ) = ( ( ( k .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) ) ( .s ` W ) ( ( ( # ` J ) - k ) ( .g ` M ) X ) ) ) with typecode |-
234 oveq1 i = k + 1 i × ˙ N 1 ˙ = k + 1 × ˙ N 1 ˙
235 2fveq3 Could not format ( i = ( k + 1 ) -> ( ( J eval R ) ` ( ( J eSymPoly R ) ` i ) ) = ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( k + 1 ) ) ) ) : No typesetting found for |- ( i = ( k + 1 ) -> ( ( J eval R ) ` ( ( J eSymPoly R ) ` i ) ) = ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( k + 1 ) ) ) ) with typecode |-
236 235 fveq1d Could not format ( i = ( k + 1 ) -> ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` i ) ) ` ( Z |` J ) ) = ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( k + 1 ) ) ) ` ( Z |` J ) ) ) : No typesetting found for |- ( i = ( k + 1 ) -> ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` i ) ) ` ( Z |` J ) ) = ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( k + 1 ) ) ) ` ( Z |` J ) ) ) with typecode |-
237 234 236 oveq12d Could not format ( i = ( k + 1 ) -> ( ( i .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` i ) ) ` ( Z |` J ) ) ) = ( ( ( k + 1 ) .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( k + 1 ) ) ) ` ( Z |` J ) ) ) ) : No typesetting found for |- ( i = ( k + 1 ) -> ( ( i .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` i ) ) ` ( Z |` J ) ) ) = ( ( ( k + 1 ) .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( k + 1 ) ) ) ` ( Z |` J ) ) ) ) with typecode |-
238 oveq2 i = k + 1 J i = J k + 1
239 238 oveq1d i = k + 1 J i M X = J k + 1 M X
240 237 239 oveq12d Could not format ( i = ( k + 1 ) -> ( ( ( i .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` i ) ) ` ( Z |` J ) ) ) ( .s ` W ) ( ( ( # ` J ) - i ) ( .g ` M ) X ) ) = ( ( ( ( k + 1 ) .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( k + 1 ) ) ) ` ( Z |` J ) ) ) ( .s ` W ) ( ( ( # ` J ) - ( k + 1 ) ) ( .g ` M ) X ) ) ) : No typesetting found for |- ( i = ( k + 1 ) -> ( ( ( i .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` i ) ) ` ( Z |` J ) ) ) ( .s ` W ) ( ( ( # ` J ) - i ) ( .g ` M ) X ) ) = ( ( ( ( k + 1 ) .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( k + 1 ) ) ) ` ( Z |` J ) ) ) ( .s ` W ) ( ( ( # ` J ) - ( k + 1 ) ) ( .g ` M ) X ) ) ) with typecode |-
241 eqid inv g W = inv g W
242 46 151 syl φ mulGrp R Mnd
243 0nn0 0 0
244 243 a1i φ 0 0
245 150 12 242 244 158 mulgnn0cld φ 0 × ˙ N 1 ˙ B
246 8 157 eqeltrrid φ 1 R B
247 2 9 46 245 246 ringcld φ 0 × ˙ N 1 ˙ · ˙ 1 R B
248 hashcl I Fin I 0
249 14 248 syl φ I 0
250 13 249 eqeltrid φ H 0
251 32 81 117 250 48 mulgnn0cld φ H M X Base W
252 1 31 2 80 46 247 251 ply1vscl φ 0 × ˙ N 1 ˙ · ˙ 1 R W H M X Base W
253 150 12 242 250 158 mulgnn0cld φ H × ˙ N 1 ˙ B
254 eqid I mPoly R = I mPoly R
255 eqid Base I mPoly R = Base I mPoly R
256 6 fveq1i Could not format ( E ` H ) = ( ( I eSymPoly R ) ` H ) : No typesetting found for |- ( E ` H ) = ( ( I eSymPoly R ) ` H ) with typecode |-
257 eqid h 0 I | finSupp 0 h = h 0 I | finSupp 0 h
258 257 14 46 250 255 esplympl Could not format ( ph -> ( ( I eSymPoly R ) ` H ) e. ( Base ` ( I mPoly R ) ) ) : No typesetting found for |- ( ph -> ( ( I eSymPoly R ) ` H ) e. ( Base ` ( I mPoly R ) ) ) with typecode |-
259 256 258 eqeltrid φ E H Base I mPoly R
260 141 14 16 elmapdd φ Z B I
261 5 254 255 2 14 35 259 260 evlcl φ Q E H Z B
262 2 9 46 253 261 ringcld φ H × ˙ N 1 ˙ · ˙ Q E H Z B
263 32 81 117 244 48 mulgnn0cld φ 0 M X Base W
264 1 31 2 80 46 262 263 ply1vscl φ H × ˙ N 1 ˙ · ˙ Q E H Z W 0 M X Base W
265 31 193 3 241 44 252 264 grpsubinv φ 0 × ˙ N 1 ˙ · ˙ 1 R W H M X - ˙ inv g W H × ˙ N 1 ˙ · ˙ Q E H Z W 0 M X = 0 × ˙ N 1 ˙ · ˙ 1 R W H M X + W H × ˙ N 1 ˙ · ˙ Q E H Z W 0 M X
266 166 41 46 244 163 esplympl Could not format ( ph -> ( ( J eSymPoly R ) ` 0 ) e. ( Base ` ( J mPoly R ) ) ) : No typesetting found for |- ( ph -> ( ( J eSymPoly R ) ` 0 ) e. ( Base ` ( J mPoly R ) ) ) with typecode |-
267 161 162 163 2 41 35 266 143 evlcl Could not format ( ph -> ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` 0 ) ) ` ( Z |` J ) ) e. B ) : No typesetting found for |- ( ph -> ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` 0 ) ) ` ( Z |` J ) ) e. B ) with typecode |-
268 2 9 46 245 267 ringcld Could not format ( ph -> ( ( 0 .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` 0 ) ) ` ( Z |` J ) ) ) e. B ) : No typesetting found for |- ( ph -> ( ( 0 .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` 0 ) ) ` ( Z |` J ) ) ) e. B ) with typecode |-
269 268 64 eleqtrd Could not format ( ph -> ( ( 0 .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` 0 ) ) ` ( Z |` J ) ) ) e. ( Base ` ( Scalar ` W ) ) ) : No typesetting found for |- ( ph -> ( ( 0 .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` 0 ) ) ` ( Z |` J ) ) ) e. ( Base ` ( Scalar ` W ) ) ) with typecode |-
270 172 subid1d φ J 0 = J
271 270 100 eqeltrd φ J 0 0
272 32 81 117 271 48 mulgnn0cld φ J 0 M X Base W
273 31 50 51 80 33 53 269 272 48 assaassd Could not format ( ph -> ( ( ( ( 0 .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` 0 ) ) ` ( Z |` J ) ) ) ( .s ` W ) ( ( ( # ` J ) - 0 ) ( .g ` M ) X ) ) ( .r ` W ) X ) = ( ( ( 0 .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` 0 ) ) ` ( Z |` J ) ) ) ( .s ` W ) ( ( ( ( # ` J ) - 0 ) ( .g ` M ) X ) ( .r ` W ) X ) ) ) : No typesetting found for |- ( ph -> ( ( ( ( 0 .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` 0 ) ) ` ( Z |` J ) ) ) ( .s ` W ) ( ( ( # ` J ) - 0 ) ( .g ` M ) X ) ) ( .r ` W ) X ) = ( ( ( 0 .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` 0 ) ) ` ( Z |` J ) ) ) ( .s ` W ) ( ( ( ( # ` J ) - 0 ) ( .g ` M ) X ) ( .r ` W ) X ) ) ) with typecode |-
274 eqid 1 J mPoly R = 1 J mPoly R
275 41 46 274 esplyfval0 Could not format ( ph -> ( ( J eSymPoly R ) ` 0 ) = ( 1r ` ( J mPoly R ) ) ) : No typesetting found for |- ( ph -> ( ( J eSymPoly R ) ` 0 ) = ( 1r ` ( J mPoly R ) ) ) with typecode |-
276 275 fveq2d Could not format ( ph -> ( ( J eval R ) ` ( ( J eSymPoly R ) ` 0 ) ) = ( ( J eval R ) ` ( 1r ` ( J mPoly R ) ) ) ) : No typesetting found for |- ( ph -> ( ( J eval R ) ` ( ( J eSymPoly R ) ` 0 ) ) = ( ( J eval R ) ` ( 1r ` ( J mPoly R ) ) ) ) with typecode |-
277 eqid algSc J mPoly R = algSc J mPoly R
278 eqid 1 R = 1 R
279 162 277 278 274 41 46 mplascl1 φ algSc J mPoly R 1 R = 1 J mPoly R
280 279 fveq2d φ J eval R algSc J mPoly R 1 R = J eval R 1 J mPoly R
281 276 280 eqtr4d Could not format ( ph -> ( ( J eval R ) ` ( ( J eSymPoly R ) ` 0 ) ) = ( ( J eval R ) ` ( ( algSc ` ( J mPoly R ) ) ` ( 1r ` R ) ) ) ) : No typesetting found for |- ( ph -> ( ( J eval R ) ` ( ( J eSymPoly R ) ` 0 ) ) = ( ( J eval R ) ` ( ( algSc ` ( J mPoly R ) ) ` ( 1r ` R ) ) ) ) with typecode |-
282 281 fveq1d Could not format ( ph -> ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` 0 ) ) ` ( Z |` J ) ) = ( ( ( J eval R ) ` ( ( algSc ` ( J mPoly R ) ) ` ( 1r ` R ) ) ) ` ( Z |` J ) ) ) : No typesetting found for |- ( ph -> ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` 0 ) ) ` ( Z |` J ) ) = ( ( ( J eval R ) ` ( ( algSc ` ( J mPoly R ) ) ` ( 1r ` R ) ) ) ` ( Z |` J ) ) ) with typecode |-
283 161 162 2 277 41 35 246 142 evlscaval φ J eval R algSc J mPoly R 1 R Z J = 1 R
284 282 283 eqtrd Could not format ( ph -> ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` 0 ) ) ` ( Z |` J ) ) = ( 1r ` R ) ) : No typesetting found for |- ( ph -> ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` 0 ) ) ` ( Z |` J ) ) = ( 1r ` R ) ) with typecode |-
285 284 oveq2d Could not format ( ph -> ( ( 0 .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` 0 ) ) ` ( Z |` J ) ) ) = ( ( 0 .^ ( N ` .1. ) ) .x. ( 1r ` R ) ) ) : No typesetting found for |- ( ph -> ( ( 0 .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` 0 ) ) ` ( Z |` J ) ) ) = ( ( 0 .^ ( N ` .1. ) ) .x. ( 1r ` R ) ) ) with typecode |-
286 32 81 34 mulgnn0p1 M Mnd J 0 X Base W J + 1 M X = J M X W X
287 117 100 48 286 syl3anc φ J + 1 M X = J M X W X
288 hashdifsn I Fin Y I I Y = I 1
289 14 19 288 syl2anc φ I Y = I 1
290 20 fveq2i J = I Y
291 13 oveq1i H 1 = I 1
292 289 290 291 3eqtr4g φ J = H 1
293 292 oveq1d φ J + 1 = H - 1 + 1
294 250 nn0cnd φ H
295 1cnd φ 1
296 294 295 npcand φ H - 1 + 1 = H
297 293 296 eqtr2d φ H = J + 1
298 297 oveq1d φ H M X = J + 1 M X
299 270 oveq1d φ J 0 M X = J M X
300 299 oveq1d φ J 0 M X W X = J M X W X
301 287 298 300 3eqtr4rd φ J 0 M X W X = H M X
302 285 301 oveq12d Could not format ( ph -> ( ( ( 0 .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` 0 ) ) ` ( Z |` J ) ) ) ( .s ` W ) ( ( ( ( # ` J ) - 0 ) ( .g ` M ) X ) ( .r ` W ) X ) ) = ( ( ( 0 .^ ( N ` .1. ) ) .x. ( 1r ` R ) ) ( .s ` W ) ( H ( .g ` M ) X ) ) ) : No typesetting found for |- ( ph -> ( ( ( 0 .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` 0 ) ) ` ( Z |` J ) ) ) ( .s ` W ) ( ( ( ( # ` J ) - 0 ) ( .g ` M ) X ) ( .r ` W ) X ) ) = ( ( ( 0 .^ ( N ` .1. ) ) .x. ( 1r ` R ) ) ( .s ` W ) ( H ( .g ` M ) X ) ) ) with typecode |-
303 273 302 eqtr2d Could not format ( ph -> ( ( ( 0 .^ ( N ` .1. ) ) .x. ( 1r ` R ) ) ( .s ` W ) ( H ( .g ` M ) X ) ) = ( ( ( ( 0 .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` 0 ) ) ` ( Z |` J ) ) ) ( .s ` W ) ( ( ( # ` J ) - 0 ) ( .g ` M ) X ) ) ( .r ` W ) X ) ) : No typesetting found for |- ( ph -> ( ( ( 0 .^ ( N ` .1. ) ) .x. ( 1r ` R ) ) ( .s ` W ) ( H ( .g ` M ) X ) ) = ( ( ( ( 0 .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` 0 ) ) ` ( Z |` J ) ) ) ( .s ` W ) ( ( ( # ` J ) - 0 ) ( .g ` M ) X ) ) ( .r ` W ) X ) ) with typecode |-
304 62 fveq2d φ R = Scalar W
305 9 304 eqtrid φ · ˙ = Scalar W
306 305 oveqd Could not format ( ph -> ( ( Z ` Y ) .x. ( ( ( # ` J ) .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( # ` J ) ) ) ` ( Z |` J ) ) ) ) = ( ( Z ` Y ) ( .r ` ( Scalar ` W ) ) ( ( ( # ` J ) .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( # ` J ) ) ) ` ( Z |` J ) ) ) ) ) : No typesetting found for |- ( ph -> ( ( Z ` Y ) .x. ( ( ( # ` J ) .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( # ` J ) ) ) ` ( Z |` J ) ) ) ) = ( ( Z ` Y ) ( .r ` ( Scalar ` W ) ) ( ( ( # ` J ) .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( # ` J ) ) ) ` ( Z |` J ) ) ) ) ) with typecode |-
307 306 oveq1d Could not format ( ph -> ( ( ( Z ` Y ) .x. ( ( ( # ` J ) .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( # ` J ) ) ) ` ( Z |` J ) ) ) ) ( .s ` W ) ( ( ( # ` J ) - ( # ` J ) ) ( .g ` M ) X ) ) = ( ( ( Z ` Y ) ( .r ` ( Scalar ` W ) ) ( ( ( # ` J ) .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( # ` J ) ) ) ` ( Z |` J ) ) ) ) ( .s ` W ) ( ( ( # ` J ) - ( # ` J ) ) ( .g ` M ) X ) ) ) : No typesetting found for |- ( ph -> ( ( ( Z ` Y ) .x. ( ( ( # ` J ) .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( # ` J ) ) ) ` ( Z |` J ) ) ) ) ( .s ` W ) ( ( ( # ` J ) - ( # ` J ) ) ( .g ` M ) X ) ) = ( ( ( Z ` Y ) ( .r ` ( Scalar ` W ) ) ( ( ( # ` J ) .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( # ` J ) ) ) ` ( Z |` J ) ) ) ) ( .s ` W ) ( ( ( # ` J ) - ( # ` J ) ) ( .g ` M ) X ) ) ) with typecode |-
308 16 19 ffvelcdmd φ Z Y B
309 150 12 242 100 158 mulgnn0cld φ J × ˙ N 1 ˙ B
310 166 41 46 100 163 esplympl Could not format ( ph -> ( ( J eSymPoly R ) ` ( # ` J ) ) e. ( Base ` ( J mPoly R ) ) ) : No typesetting found for |- ( ph -> ( ( J eSymPoly R ) ` ( # ` J ) ) e. ( Base ` ( J mPoly R ) ) ) with typecode |-
311 161 162 163 2 41 35 310 143 evlcl Could not format ( ph -> ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( # ` J ) ) ) ` ( Z |` J ) ) e. B ) : No typesetting found for |- ( ph -> ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( # ` J ) ) ) ` ( Z |` J ) ) e. B ) with typecode |-
312 2 9 35 308 309 311 crng12d Could not format ( ph -> ( ( Z ` Y ) .x. ( ( ( # ` J ) .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( # ` J ) ) ) ` ( Z |` J ) ) ) ) = ( ( ( # ` J ) .^ ( N ` .1. ) ) .x. ( ( Z ` Y ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( # ` J ) ) ) ` ( Z |` J ) ) ) ) ) : No typesetting found for |- ( ph -> ( ( Z ` Y ) .x. ( ( ( # ` J ) .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( # ` J ) ) ) ` ( Z |` J ) ) ) ) = ( ( ( # ` J ) .^ ( N ` .1. ) ) .x. ( ( Z ` Y ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( # ` J ) ) ) ` ( Z |` J ) ) ) ) ) with typecode |-
313 297 oveq1d φ H × ˙ N 1 ˙ = J + 1 × ˙ N 1 ˙
314 8 7 12 46 100 ringm1expp1 φ J + 1 × ˙ N 1 ˙ = N J × ˙ N 1 ˙
315 313 314 eqtrd φ H × ˙ N 1 ˙ = N J × ˙ N 1 ˙
316 315 fveq2d φ N H × ˙ N 1 ˙ = N N J × ˙ N 1 ˙
317 2 7 156 309 grpinvinvd φ N N J × ˙ N 1 ˙ = J × ˙ N 1 ˙
318 316 317 eqtrd φ N H × ˙ N 1 ˙ = J × ˙ N 1 ˙
319 eqid + R = + R
320 eqid Could not format ( J eSymPoly R ) = ( J eSymPoly R ) : No typesetting found for |- ( J eSymPoly R ) = ( J eSymPoly R ) with typecode |-
321 eqid J = J
322 2 319 9 5 161 6 320 13 321 20 14 35 19 16 esplyfvn Could not format ( ph -> ( ( Q ` ( E ` H ) ) ` Z ) = ( ( Z ` Y ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( # ` J ) ) ) ` ( Z |` J ) ) ) ) : No typesetting found for |- ( ph -> ( ( Q ` ( E ` H ) ) ` Z ) = ( ( Z ` Y ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( # ` J ) ) ) ` ( Z |` J ) ) ) ) with typecode |-
323 318 322 oveq12d Could not format ( ph -> ( ( N ` ( H .^ ( N ` .1. ) ) ) .x. ( ( Q ` ( E ` H ) ) ` Z ) ) = ( ( ( # ` J ) .^ ( N ` .1. ) ) .x. ( ( Z ` Y ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( # ` J ) ) ) ` ( Z |` J ) ) ) ) ) : No typesetting found for |- ( ph -> ( ( N ` ( H .^ ( N ` .1. ) ) ) .x. ( ( Q ` ( E ` H ) ) ` Z ) ) = ( ( ( # ` J ) .^ ( N ` .1. ) ) .x. ( ( Z ` Y ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( # ` J ) ) ) ` ( Z |` J ) ) ) ) ) with typecode |-
324 312 323 eqtr4d Could not format ( ph -> ( ( Z ` Y ) .x. ( ( ( # ` J ) .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( # ` J ) ) ) ` ( Z |` J ) ) ) ) = ( ( N ` ( H .^ ( N ` .1. ) ) ) .x. ( ( Q ` ( E ` H ) ) ` Z ) ) ) : No typesetting found for |- ( ph -> ( ( Z ` Y ) .x. ( ( ( # ` J ) .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( # ` J ) ) ) ` ( Z |` J ) ) ) ) = ( ( N ` ( H .^ ( N ` .1. ) ) ) .x. ( ( Q ` ( E ` H ) ) ` Z ) ) ) with typecode |-
325 2 9 7 46 253 261 ringmneg1 φ N H × ˙ N 1 ˙ · ˙ Q E H Z = N H × ˙ N 1 ˙ · ˙ Q E H Z
326 62 fveq2d φ inv g R = inv g Scalar W
327 7 326 eqtrid φ N = inv g Scalar W
328 327 fveq1d φ N H × ˙ N 1 ˙ · ˙ Q E H Z = inv g Scalar W H × ˙ N 1 ˙ · ˙ Q E H Z
329 324 325 328 3eqtrd Could not format ( ph -> ( ( Z ` Y ) .x. ( ( ( # ` J ) .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( # ` J ) ) ) ` ( Z |` J ) ) ) ) = ( ( invg ` ( Scalar ` W ) ) ` ( ( H .^ ( N ` .1. ) ) .x. ( ( Q ` ( E ` H ) ) ` Z ) ) ) ) : No typesetting found for |- ( ph -> ( ( Z ` Y ) .x. ( ( ( # ` J ) .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( # ` J ) ) ) ` ( Z |` J ) ) ) ) = ( ( invg ` ( Scalar ` W ) ) ` ( ( H .^ ( N ` .1. ) ) .x. ( ( Q ` ( E ` H ) ) ` Z ) ) ) ) with typecode |-
330 172 subidd φ J J = 0
331 330 oveq1d φ J J M X = 0 M X
332 329 331 oveq12d Could not format ( ph -> ( ( ( Z ` Y ) .x. ( ( ( # ` J ) .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( # ` J ) ) ) ` ( Z |` J ) ) ) ) ( .s ` W ) ( ( ( # ` J ) - ( # ` J ) ) ( .g ` M ) X ) ) = ( ( ( invg ` ( Scalar ` W ) ) ` ( ( H .^ ( N ` .1. ) ) .x. ( ( Q ` ( E ` H ) ) ` Z ) ) ) ( .s ` W ) ( 0 ( .g ` M ) X ) ) ) : No typesetting found for |- ( ph -> ( ( ( Z ` Y ) .x. ( ( ( # ` J ) .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( # ` J ) ) ) ` ( Z |` J ) ) ) ) ( .s ` W ) ( ( ( # ` J ) - ( # ` J ) ) ( .g ` M ) X ) ) = ( ( ( invg ` ( Scalar ` W ) ) ` ( ( H .^ ( N ` .1. ) ) .x. ( ( Q ` ( E ` H ) ) ` Z ) ) ) ( .s ` W ) ( 0 ( .g ` M ) X ) ) ) with typecode |-
333 2 9 46 309 311 ringcld Could not format ( ph -> ( ( ( # ` J ) .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( # ` J ) ) ) ` ( Z |` J ) ) ) e. B ) : No typesetting found for |- ( ph -> ( ( ( # ` J ) .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( # ` J ) ) ) ` ( Z |` J ) ) ) e. B ) with typecode |-
334 333 64 eleqtrd Could not format ( ph -> ( ( ( # ` J ) .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( # ` J ) ) ) ` ( Z |` J ) ) ) e. ( Base ` ( Scalar ` W ) ) ) : No typesetting found for |- ( ph -> ( ( ( # ` J ) .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( # ` J ) ) ) ` ( Z |` J ) ) ) e. ( Base ` ( Scalar ` W ) ) ) with typecode |-
335 330 244 eqeltrd φ J J 0
336 32 81 117 335 48 mulgnn0cld φ J J M X Base W
337 eqid Scalar W = Scalar W
338 31 50 80 51 337 lmodvsass Could not format ( ( W e. LMod /\ ( ( Z ` Y ) e. ( Base ` ( Scalar ` W ) ) /\ ( ( ( # ` J ) .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( # ` J ) ) ) ` ( Z |` J ) ) ) e. ( Base ` ( Scalar ` W ) ) /\ ( ( ( # ` J ) - ( # ` J ) ) ( .g ` M ) X ) e. ( Base ` W ) ) ) -> ( ( ( Z ` Y ) ( .r ` ( Scalar ` W ) ) ( ( ( # ` J ) .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( # ` J ) ) ) ` ( Z |` J ) ) ) ) ( .s ` W ) ( ( ( # ` J ) - ( # ` J ) ) ( .g ` M ) X ) ) = ( ( Z ` Y ) ( .s ` W ) ( ( ( ( # ` J ) .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( # ` J ) ) ) ` ( Z |` J ) ) ) ( .s ` W ) ( ( ( # ` J ) - ( # ` J ) ) ( .g ` M ) X ) ) ) ) : No typesetting found for |- ( ( W e. LMod /\ ( ( Z ` Y ) e. ( Base ` ( Scalar ` W ) ) /\ ( ( ( # ` J ) .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( # ` J ) ) ) ` ( Z |` J ) ) ) e. ( Base ` ( Scalar ` W ) ) /\ ( ( ( # ` J ) - ( # ` J ) ) ( .g ` M ) X ) e. ( Base ` W ) ) ) -> ( ( ( Z ` Y ) ( .r ` ( Scalar ` W ) ) ( ( ( # ` J ) .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( # ` J ) ) ) ` ( Z |` J ) ) ) ) ( .s ` W ) ( ( ( # ` J ) - ( # ` J ) ) ( .g ` M ) X ) ) = ( ( Z ` Y ) ( .s ` W ) ( ( ( ( # ` J ) .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( # ` J ) ) ) ` ( Z |` J ) ) ) ( .s ` W ) ( ( ( # ` J ) - ( # ` J ) ) ( .g ` M ) X ) ) ) ) with typecode |-
339 102 73 334 336 338 syl13anc Could not format ( ph -> ( ( ( Z ` Y ) ( .r ` ( Scalar ` W ) ) ( ( ( # ` J ) .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( # ` J ) ) ) ` ( Z |` J ) ) ) ) ( .s ` W ) ( ( ( # ` J ) - ( # ` J ) ) ( .g ` M ) X ) ) = ( ( Z ` Y ) ( .s ` W ) ( ( ( ( # ` J ) .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( # ` J ) ) ) ` ( Z |` J ) ) ) ( .s ` W ) ( ( ( # ` J ) - ( # ` J ) ) ( .g ` M ) X ) ) ) ) : No typesetting found for |- ( ph -> ( ( ( Z ` Y ) ( .r ` ( Scalar ` W ) ) ( ( ( # ` J ) .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( # ` J ) ) ) ` ( Z |` J ) ) ) ) ( .s ` W ) ( ( ( # ` J ) - ( # ` J ) ) ( .g ` M ) X ) ) = ( ( Z ` Y ) ( .s ` W ) ( ( ( ( # ` J ) .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( # ` J ) ) ) ` ( Z |` J ) ) ) ( .s ` W ) ( ( ( # ` J ) - ( # ` J ) ) ( .g ` M ) X ) ) ) ) with typecode |-
340 307 332 339 3eqtr3d Could not format ( ph -> ( ( ( invg ` ( Scalar ` W ) ) ` ( ( H .^ ( N ` .1. ) ) .x. ( ( Q ` ( E ` H ) ) ` Z ) ) ) ( .s ` W ) ( 0 ( .g ` M ) X ) ) = ( ( Z ` Y ) ( .s ` W ) ( ( ( ( # ` J ) .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( # ` J ) ) ) ` ( Z |` J ) ) ) ( .s ` W ) ( ( ( # ` J ) - ( # ` J ) ) ( .g ` M ) X ) ) ) ) : No typesetting found for |- ( ph -> ( ( ( invg ` ( Scalar ` W ) ) ` ( ( H .^ ( N ` .1. ) ) .x. ( ( Q ` ( E ` H ) ) ` Z ) ) ) ( .s ` W ) ( 0 ( .g ` M ) X ) ) = ( ( Z ` Y ) ( .s ` W ) ( ( ( ( # ` J ) .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( # ` J ) ) ) ` ( Z |` J ) ) ) ( .s ` W ) ( ( ( # ` J ) - ( # ` J ) ) ( .g ` M ) X ) ) ) ) with typecode |-
341 eqid inv g Scalar W = inv g Scalar W
342 262 64 eleqtrd φ H × ˙ N 1 ˙ · ˙ Q E H Z Base Scalar W
343 31 50 80 241 51 341 102 263 342 lmodvsneg φ inv g W H × ˙ N 1 ˙ · ˙ Q E H Z W 0 M X = inv g Scalar W H × ˙ N 1 ˙ · ˙ Q E H Z W 0 M X
344 1 31 2 80 46 333 336 ply1vscl Could not format ( ph -> ( ( ( ( # ` J ) .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( # ` J ) ) ) ` ( Z |` J ) ) ) ( .s ` W ) ( ( ( # ` J ) - ( # ` J ) ) ( .g ` M ) X ) ) e. ( Base ` W ) ) : No typesetting found for |- ( ph -> ( ( ( ( # ` J ) .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( # ` J ) ) ) ` ( Z |` J ) ) ) ( .s ` W ) ( ( ( # ` J ) - ( # ` J ) ) ( .g ` M ) X ) ) e. ( Base ` W ) ) with typecode |-
345 11 50 51 31 33 80 asclmul2 Could not format ( ( W e. AssAlg /\ ( Z ` Y ) e. ( Base ` ( Scalar ` W ) ) /\ ( ( ( ( # ` J ) .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( # ` J ) ) ) ` ( Z |` J ) ) ) ( .s ` W ) ( ( ( # ` J ) - ( # ` J ) ) ( .g ` M ) X ) ) e. ( Base ` W ) ) -> ( ( ( ( ( # ` J ) .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( # ` J ) ) ) ` ( Z |` J ) ) ) ( .s ` W ) ( ( ( # ` J ) - ( # ` J ) ) ( .g ` M ) X ) ) ( .r ` W ) ( A ` ( Z ` Y ) ) ) = ( ( Z ` Y ) ( .s ` W ) ( ( ( ( # ` J ) .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( # ` J ) ) ) ` ( Z |` J ) ) ) ( .s ` W ) ( ( ( # ` J ) - ( # ` J ) ) ( .g ` M ) X ) ) ) ) : No typesetting found for |- ( ( W e. AssAlg /\ ( Z ` Y ) e. ( Base ` ( Scalar ` W ) ) /\ ( ( ( ( # ` J ) .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( # ` J ) ) ) ` ( Z |` J ) ) ) ( .s ` W ) ( ( ( # ` J ) - ( # ` J ) ) ( .g ` M ) X ) ) e. ( Base ` W ) ) -> ( ( ( ( ( # ` J ) .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( # ` J ) ) ) ` ( Z |` J ) ) ) ( .s ` W ) ( ( ( # ` J ) - ( # ` J ) ) ( .g ` M ) X ) ) ( .r ` W ) ( A ` ( Z ` Y ) ) ) = ( ( Z ` Y ) ( .s ` W ) ( ( ( ( # ` J ) .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( # ` J ) ) ) ` ( Z |` J ) ) ) ( .s ` W ) ( ( ( # ` J ) - ( # ` J ) ) ( .g ` M ) X ) ) ) ) with typecode |-
346 53 73 344 345 syl3anc Could not format ( ph -> ( ( ( ( ( # ` J ) .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( # ` J ) ) ) ` ( Z |` J ) ) ) ( .s ` W ) ( ( ( # ` J ) - ( # ` J ) ) ( .g ` M ) X ) ) ( .r ` W ) ( A ` ( Z ` Y ) ) ) = ( ( Z ` Y ) ( .s ` W ) ( ( ( ( # ` J ) .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( # ` J ) ) ) ` ( Z |` J ) ) ) ( .s ` W ) ( ( ( # ` J ) - ( # ` J ) ) ( .g ` M ) X ) ) ) ) : No typesetting found for |- ( ph -> ( ( ( ( ( # ` J ) .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( # ` J ) ) ) ` ( Z |` J ) ) ) ( .s ` W ) ( ( ( # ` J ) - ( # ` J ) ) ( .g ` M ) X ) ) ( .r ` W ) ( A ` ( Z ` Y ) ) ) = ( ( Z ` Y ) ( .s ` W ) ( ( ( ( # ` J ) .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( # ` J ) ) ) ` ( Z |` J ) ) ) ( .s ` W ) ( ( ( # ` J ) - ( # ` J ) ) ( .g ` M ) X ) ) ) ) with typecode |-
347 340 343 346 3eqtr4d Could not format ( ph -> ( ( invg ` W ) ` ( ( ( H .^ ( N ` .1. ) ) .x. ( ( Q ` ( E ` H ) ) ` Z ) ) ( .s ` W ) ( 0 ( .g ` M ) X ) ) ) = ( ( ( ( ( # ` J ) .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( # ` J ) ) ) ` ( Z |` J ) ) ) ( .s ` W ) ( ( ( # ` J ) - ( # ` J ) ) ( .g ` M ) X ) ) ( .r ` W ) ( A ` ( Z ` Y ) ) ) ) : No typesetting found for |- ( ph -> ( ( invg ` W ) ` ( ( ( H .^ ( N ` .1. ) ) .x. ( ( Q ` ( E ` H ) ) ` Z ) ) ( .s ` W ) ( 0 ( .g ` M ) X ) ) ) = ( ( ( ( ( # ` J ) .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( # ` J ) ) ) ` ( Z |` J ) ) ) ( .s ` W ) ( ( ( # ` J ) - ( # ` J ) ) ( .g ` M ) X ) ) ( .r ` W ) ( A ` ( Z ` Y ) ) ) ) with typecode |-
348 303 347 oveq12d Could not format ( ph -> ( ( ( ( 0 .^ ( N ` .1. ) ) .x. ( 1r ` R ) ) ( .s ` W ) ( H ( .g ` M ) X ) ) .- ( ( invg ` W ) ` ( ( ( H .^ ( N ` .1. ) ) .x. ( ( Q ` ( E ` H ) ) ` Z ) ) ( .s ` W ) ( 0 ( .g ` M ) X ) ) ) ) = ( ( ( ( ( 0 .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` 0 ) ) ` ( Z |` J ) ) ) ( .s ` W ) ( ( ( # ` J ) - 0 ) ( .g ` M ) X ) ) ( .r ` W ) X ) .- ( ( ( ( ( # ` J ) .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( # ` J ) ) ) ` ( Z |` J ) ) ) ( .s ` W ) ( ( ( # ` J ) - ( # ` J ) ) ( .g ` M ) X ) ) ( .r ` W ) ( A ` ( Z ` Y ) ) ) ) ) : No typesetting found for |- ( ph -> ( ( ( ( 0 .^ ( N ` .1. ) ) .x. ( 1r ` R ) ) ( .s ` W ) ( H ( .g ` M ) X ) ) .- ( ( invg ` W ) ` ( ( ( H .^ ( N ` .1. ) ) .x. ( ( Q ` ( E ` H ) ) ` Z ) ) ( .s ` W ) ( 0 ( .g ` M ) X ) ) ) ) = ( ( ( ( ( 0 .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` 0 ) ) ` ( Z |` J ) ) ) ( .s ` W ) ( ( ( # ` J ) - 0 ) ( .g ` M ) X ) ) ( .r ` W ) X ) .- ( ( ( ( ( # ` J ) .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( # ` J ) ) ) ` ( Z |` J ) ) ) ( .s ` W ) ( ( ( # ` J ) - ( # ` J ) ) ( .g ` M ) X ) ) ( .r ` W ) ( A ` ( Z ` Y ) ) ) ) ) with typecode |-
349 265 348 eqtr3d Could not format ( ph -> ( ( ( ( 0 .^ ( N ` .1. ) ) .x. ( 1r ` R ) ) ( .s ` W ) ( H ( .g ` M ) X ) ) ( +g ` W ) ( ( ( H .^ ( N ` .1. ) ) .x. ( ( Q ` ( E ` H ) ) ` Z ) ) ( .s ` W ) ( 0 ( .g ` M ) X ) ) ) = ( ( ( ( ( 0 .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` 0 ) ) ` ( Z |` J ) ) ) ( .s ` W ) ( ( ( # ` J ) - 0 ) ( .g ` M ) X ) ) ( .r ` W ) X ) .- ( ( ( ( ( # ` J ) .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( # ` J ) ) ) ` ( Z |` J ) ) ) ( .s ` W ) ( ( ( # ` J ) - ( # ` J ) ) ( .g ` M ) X ) ) ( .r ` W ) ( A ` ( Z ` Y ) ) ) ) ) : No typesetting found for |- ( ph -> ( ( ( ( 0 .^ ( N ` .1. ) ) .x. ( 1r ` R ) ) ( .s ` W ) ( H ( .g ` M ) X ) ) ( +g ` W ) ( ( ( H .^ ( N ` .1. ) ) .x. ( ( Q ` ( E ` H ) ) ` Z ) ) ( .s ` W ) ( 0 ( .g ` M ) X ) ) ) = ( ( ( ( ( 0 .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` 0 ) ) ` ( Z |` J ) ) ) ( .s ` W ) ( ( ( # ` J ) - 0 ) ( .g ` M ) X ) ) ( .r ` W ) X ) .- ( ( ( ( ( # ` J ) .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( # ` J ) ) ) ` ( Z |` J ) ) ) ( .s ` W ) ( ( ( # ` J ) - ( # ` J ) ) ( .g ` M ) X ) ) ( .r ` W ) ( A ` ( Z ` Y ) ) ) ) ) with typecode |-
350 46 adantr φ k 0 ..^ J R Ring
351 350 151 syl φ k 0 ..^ J mulGrp R Mnd
352 fzossfz 0 ..^ J 0 J
353 simpr φ k 0 ..^ J k 0 ..^ J
354 352 353 sselid φ k 0 ..^ J k 0 J
355 110 354 sselid φ k 0 ..^ J k 0
356 peano2nn0 k 0 k + 1 0
357 355 356 syl φ k 0 ..^ J k + 1 0
358 158 adantr φ k 0 ..^ J N 1 ˙ B
359 150 12 351 357 358 mulgnn0cld φ k 0 ..^ J k + 1 × ˙ N 1 ˙ B
360 41 adantr φ k 0 ..^ J J Fin
361 35 adantr φ k 0 ..^ J R CRing
362 166 360 350 357 163 esplympl Could not format ( ( ph /\ k e. ( 0 ..^ ( # ` J ) ) ) -> ( ( J eSymPoly R ) ` ( k + 1 ) ) e. ( Base ` ( J mPoly R ) ) ) : No typesetting found for |- ( ( ph /\ k e. ( 0 ..^ ( # ` J ) ) ) -> ( ( J eSymPoly R ) ` ( k + 1 ) ) e. ( Base ` ( J mPoly R ) ) ) with typecode |-
363 143 adantr φ k 0 ..^ J Z J B J
364 161 162 163 2 360 361 362 363 evlcl Could not format ( ( ph /\ k e. ( 0 ..^ ( # ` J ) ) ) -> ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( k + 1 ) ) ) ` ( Z |` J ) ) e. B ) : No typesetting found for |- ( ( ph /\ k e. ( 0 ..^ ( # ` J ) ) ) -> ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( k + 1 ) ) ) ` ( Z |` J ) ) e. B ) with typecode |-
365 16 adantr φ k 0 ..^ J Z : I B
366 19 adantr φ k 0 ..^ J Y I
367 365 366 ffvelcdmd φ k 0 ..^ J Z Y B
368 166 360 350 355 163 esplympl Could not format ( ( ph /\ k e. ( 0 ..^ ( # ` J ) ) ) -> ( ( J eSymPoly R ) ` k ) e. ( Base ` ( J mPoly R ) ) ) : No typesetting found for |- ( ( ph /\ k e. ( 0 ..^ ( # ` J ) ) ) -> ( ( J eSymPoly R ) ` k ) e. ( Base ` ( J mPoly R ) ) ) with typecode |-
369 161 162 163 2 360 361 368 363 evlcl Could not format ( ( ph /\ k e. ( 0 ..^ ( # ` J ) ) ) -> ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) e. B ) : No typesetting found for |- ( ( ph /\ k e. ( 0 ..^ ( # ` J ) ) ) -> ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) e. B ) with typecode |-
370 2 9 350 367 369 ringcld Could not format ( ( ph /\ k e. ( 0 ..^ ( # ` J ) ) ) -> ( ( Z ` Y ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) ) e. B ) : No typesetting found for |- ( ( ph /\ k e. ( 0 ..^ ( # ` J ) ) ) -> ( ( Z ` Y ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) ) e. B ) with typecode |-
371 2 319 9 350 359 364 370 ringdid Could not format ( ( ph /\ k e. ( 0 ..^ ( # ` J ) ) ) -> ( ( ( k + 1 ) .^ ( N ` .1. ) ) .x. ( ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( k + 1 ) ) ) ` ( Z |` J ) ) ( +g ` R ) ( ( Z ` Y ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) ) ) ) = ( ( ( ( k + 1 ) .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( k + 1 ) ) ) ` ( Z |` J ) ) ) ( +g ` R ) ( ( ( k + 1 ) .^ ( N ` .1. ) ) .x. ( ( Z ` Y ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) ) ) ) ) : No typesetting found for |- ( ( ph /\ k e. ( 0 ..^ ( # ` J ) ) ) -> ( ( ( k + 1 ) .^ ( N ` .1. ) ) .x. ( ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( k + 1 ) ) ) ` ( Z |` J ) ) ( +g ` R ) ( ( Z ` Y ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) ) ) ) = ( ( ( ( k + 1 ) .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( k + 1 ) ) ) ` ( Z |` J ) ) ) ( +g ` R ) ( ( ( k + 1 ) .^ ( N ` .1. ) ) .x. ( ( Z ` Y ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) ) ) ) ) with typecode |-
372 14 adantr φ k 0 ..^ J I Fin
373 6 fveq1i Could not format ( E ` ( k + 1 ) ) = ( ( I eSymPoly R ) ` ( k + 1 ) ) : No typesetting found for |- ( E ` ( k + 1 ) ) = ( ( I eSymPoly R ) ` ( k + 1 ) ) with typecode |-
374 9 372 361 366 20 320 354 166 373 2 5 161 319 365 esplyindfv Could not format ( ( ph /\ k e. ( 0 ..^ ( # ` J ) ) ) -> ( ( Q ` ( E ` ( k + 1 ) ) ) ` Z ) = ( ( ( Z ` Y ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) ) ( +g ` R ) ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( k + 1 ) ) ) ` ( Z |` J ) ) ) ) : No typesetting found for |- ( ( ph /\ k e. ( 0 ..^ ( # ` J ) ) ) -> ( ( Q ` ( E ` ( k + 1 ) ) ) ` Z ) = ( ( ( Z ` Y ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) ) ( +g ` R ) ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( k + 1 ) ) ) ` ( Z |` J ) ) ) ) with typecode |-
375 46 ringabld φ R Abel
376 375 adantr φ k 0 ..^ J R Abel
377 2 319 376 370 364 ablcomd Could not format ( ( ph /\ k e. ( 0 ..^ ( # ` J ) ) ) -> ( ( ( Z ` Y ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) ) ( +g ` R ) ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( k + 1 ) ) ) ` ( Z |` J ) ) ) = ( ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( k + 1 ) ) ) ` ( Z |` J ) ) ( +g ` R ) ( ( Z ` Y ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) ) ) ) : No typesetting found for |- ( ( ph /\ k e. ( 0 ..^ ( # ` J ) ) ) -> ( ( ( Z ` Y ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) ) ( +g ` R ) ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( k + 1 ) ) ) ` ( Z |` J ) ) ) = ( ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( k + 1 ) ) ) ` ( Z |` J ) ) ( +g ` R ) ( ( Z ` Y ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) ) ) ) with typecode |-
378 374 377 eqtrd Could not format ( ( ph /\ k e. ( 0 ..^ ( # ` J ) ) ) -> ( ( Q ` ( E ` ( k + 1 ) ) ) ` Z ) = ( ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( k + 1 ) ) ) ` ( Z |` J ) ) ( +g ` R ) ( ( Z ` Y ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) ) ) ) : No typesetting found for |- ( ( ph /\ k e. ( 0 ..^ ( # ` J ) ) ) -> ( ( Q ` ( E ` ( k + 1 ) ) ) ` Z ) = ( ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( k + 1 ) ) ) ` ( Z |` J ) ) ( +g ` R ) ( ( Z ` Y ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) ) ) ) with typecode |-
379 378 oveq2d Could not format ( ( ph /\ k e. ( 0 ..^ ( # ` J ) ) ) -> ( ( ( k + 1 ) .^ ( N ` .1. ) ) .x. ( ( Q ` ( E ` ( k + 1 ) ) ) ` Z ) ) = ( ( ( k + 1 ) .^ ( N ` .1. ) ) .x. ( ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( k + 1 ) ) ) ` ( Z |` J ) ) ( +g ` R ) ( ( Z ` Y ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) ) ) ) ) : No typesetting found for |- ( ( ph /\ k e. ( 0 ..^ ( # ` J ) ) ) -> ( ( ( k + 1 ) .^ ( N ` .1. ) ) .x. ( ( Q ` ( E ` ( k + 1 ) ) ) ` Z ) ) = ( ( ( k + 1 ) .^ ( N ` .1. ) ) .x. ( ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( k + 1 ) ) ) ` ( Z |` J ) ) ( +g ` R ) ( ( Z ` Y ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) ) ) ) ) with typecode |-
380 eqid - R = - R
381 156 adantr φ k 0 ..^ J R Grp
382 2 9 350 359 364 ringcld Could not format ( ( ph /\ k e. ( 0 ..^ ( # ` J ) ) ) -> ( ( ( k + 1 ) .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( k + 1 ) ) ) ` ( Z |` J ) ) ) e. B ) : No typesetting found for |- ( ( ph /\ k e. ( 0 ..^ ( # ` J ) ) ) -> ( ( ( k + 1 ) .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( k + 1 ) ) ) ` ( Z |` J ) ) ) e. B ) with typecode |-
383 2 9 350 359 370 ringcld Could not format ( ( ph /\ k e. ( 0 ..^ ( # ` J ) ) ) -> ( ( ( k + 1 ) .^ ( N ` .1. ) ) .x. ( ( Z ` Y ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) ) ) e. B ) : No typesetting found for |- ( ( ph /\ k e. ( 0 ..^ ( # ` J ) ) ) -> ( ( ( k + 1 ) .^ ( N ` .1. ) ) .x. ( ( Z ` Y ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) ) ) e. B ) with typecode |-
384 2 319 380 7 381 382 383 grpsubinv Could not format ( ( ph /\ k e. ( 0 ..^ ( # ` J ) ) ) -> ( ( ( ( k + 1 ) .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( k + 1 ) ) ) ` ( Z |` J ) ) ) ( -g ` R ) ( N ` ( ( ( k + 1 ) .^ ( N ` .1. ) ) .x. ( ( Z ` Y ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) ) ) ) ) = ( ( ( ( k + 1 ) .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( k + 1 ) ) ) ` ( Z |` J ) ) ) ( +g ` R ) ( ( ( k + 1 ) .^ ( N ` .1. ) ) .x. ( ( Z ` Y ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) ) ) ) ) : No typesetting found for |- ( ( ph /\ k e. ( 0 ..^ ( # ` J ) ) ) -> ( ( ( ( k + 1 ) .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( k + 1 ) ) ) ` ( Z |` J ) ) ) ( -g ` R ) ( N ` ( ( ( k + 1 ) .^ ( N ` .1. ) ) .x. ( ( Z ` Y ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) ) ) ) ) = ( ( ( ( k + 1 ) .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( k + 1 ) ) ) ` ( Z |` J ) ) ) ( +g ` R ) ( ( ( k + 1 ) .^ ( N ` .1. ) ) .x. ( ( Z ` Y ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) ) ) ) ) with typecode |-
385 371 379 384 3eqtr4d Could not format ( ( ph /\ k e. ( 0 ..^ ( # ` J ) ) ) -> ( ( ( k + 1 ) .^ ( N ` .1. ) ) .x. ( ( Q ` ( E ` ( k + 1 ) ) ) ` Z ) ) = ( ( ( ( k + 1 ) .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( k + 1 ) ) ) ` ( Z |` J ) ) ) ( -g ` R ) ( N ` ( ( ( k + 1 ) .^ ( N ` .1. ) ) .x. ( ( Z ` Y ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) ) ) ) ) ) : No typesetting found for |- ( ( ph /\ k e. ( 0 ..^ ( # ` J ) ) ) -> ( ( ( k + 1 ) .^ ( N ` .1. ) ) .x. ( ( Q ` ( E ` ( k + 1 ) ) ) ` Z ) ) = ( ( ( ( k + 1 ) .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( k + 1 ) ) ) ` ( Z |` J ) ) ) ( -g ` R ) ( N ` ( ( ( k + 1 ) .^ ( N ` .1. ) ) .x. ( ( Z ` Y ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) ) ) ) ) ) with typecode |-
386 62 fveq2d φ - R = - Scalar W
387 386 adantr φ k 0 ..^ J - R = - Scalar W
388 eqidd Could not format ( ( ph /\ k e. ( 0 ..^ ( # ` J ) ) ) -> ( ( ( k + 1 ) .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( k + 1 ) ) ) ` ( Z |` J ) ) ) = ( ( ( k + 1 ) .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( k + 1 ) ) ) ` ( Z |` J ) ) ) ) : No typesetting found for |- ( ( ph /\ k e. ( 0 ..^ ( # ` J ) ) ) -> ( ( ( k + 1 ) .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( k + 1 ) ) ) ` ( Z |` J ) ) ) = ( ( ( k + 1 ) .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( k + 1 ) ) ) ` ( Z |` J ) ) ) ) with typecode |-
389 242 adantr φ k 0 mulGrp R Mnd
390 simpr φ k 0 k 0
391 158 adantr φ k 0 N 1 ˙ B
392 150 12 389 390 391 mulgnn0cld φ k 0 k × ˙ N 1 ˙ B
393 355 392 syldan φ k 0 ..^ J k × ˙ N 1 ˙ B
394 2 9 350 393 369 367 ringassd Could not format ( ( ph /\ k e. ( 0 ..^ ( # ` J ) ) ) -> ( ( ( k .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) ) .x. ( Z ` Y ) ) = ( ( k .^ ( N ` .1. ) ) .x. ( ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) .x. ( Z ` Y ) ) ) ) : No typesetting found for |- ( ( ph /\ k e. ( 0 ..^ ( # ` J ) ) ) -> ( ( ( k .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) ) .x. ( Z ` Y ) ) = ( ( k .^ ( N ` .1. ) ) .x. ( ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) .x. ( Z ` Y ) ) ) ) with typecode |-
395 8 7 12 350 355 ringm1expp1 φ k 0 ..^ J k + 1 × ˙ N 1 ˙ = N k × ˙ N 1 ˙
396 395 fveq2d φ k 0 ..^ J N k + 1 × ˙ N 1 ˙ = N N k × ˙ N 1 ˙
397 2 7 381 393 grpinvinvd φ k 0 ..^ J N N k × ˙ N 1 ˙ = k × ˙ N 1 ˙
398 396 397 eqtrd φ k 0 ..^ J N k + 1 × ˙ N 1 ˙ = k × ˙ N 1 ˙
399 2 9 361 367 369 crngcomd Could not format ( ( ph /\ k e. ( 0 ..^ ( # ` J ) ) ) -> ( ( Z ` Y ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) ) = ( ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) .x. ( Z ` Y ) ) ) : No typesetting found for |- ( ( ph /\ k e. ( 0 ..^ ( # ` J ) ) ) -> ( ( Z ` Y ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) ) = ( ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) .x. ( Z ` Y ) ) ) with typecode |-
400 398 399 oveq12d Could not format ( ( ph /\ k e. ( 0 ..^ ( # ` J ) ) ) -> ( ( N ` ( ( k + 1 ) .^ ( N ` .1. ) ) ) .x. ( ( Z ` Y ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) ) ) = ( ( k .^ ( N ` .1. ) ) .x. ( ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) .x. ( Z ` Y ) ) ) ) : No typesetting found for |- ( ( ph /\ k e. ( 0 ..^ ( # ` J ) ) ) -> ( ( N ` ( ( k + 1 ) .^ ( N ` .1. ) ) ) .x. ( ( Z ` Y ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) ) ) = ( ( k .^ ( N ` .1. ) ) .x. ( ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) .x. ( Z ` Y ) ) ) ) with typecode |-
401 2 9 7 350 359 370 ringmneg1 Could not format ( ( ph /\ k e. ( 0 ..^ ( # ` J ) ) ) -> ( ( N ` ( ( k + 1 ) .^ ( N ` .1. ) ) ) .x. ( ( Z ` Y ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) ) ) = ( N ` ( ( ( k + 1 ) .^ ( N ` .1. ) ) .x. ( ( Z ` Y ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) ) ) ) ) : No typesetting found for |- ( ( ph /\ k e. ( 0 ..^ ( # ` J ) ) ) -> ( ( N ` ( ( k + 1 ) .^ ( N ` .1. ) ) ) .x. ( ( Z ` Y ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) ) ) = ( N ` ( ( ( k + 1 ) .^ ( N ` .1. ) ) .x. ( ( Z ` Y ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) ) ) ) ) with typecode |-
402 394 400 401 3eqtr2rd Could not format ( ( ph /\ k e. ( 0 ..^ ( # ` J ) ) ) -> ( N ` ( ( ( k + 1 ) .^ ( N ` .1. ) ) .x. ( ( Z ` Y ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) ) ) ) = ( ( ( k .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) ) .x. ( Z ` Y ) ) ) : No typesetting found for |- ( ( ph /\ k e. ( 0 ..^ ( # ` J ) ) ) -> ( N ` ( ( ( k + 1 ) .^ ( N ` .1. ) ) .x. ( ( Z ` Y ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) ) ) ) = ( ( ( k .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) ) .x. ( Z ` Y ) ) ) with typecode |-
403 387 388 402 oveq123d Could not format ( ( ph /\ k e. ( 0 ..^ ( # ` J ) ) ) -> ( ( ( ( k + 1 ) .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( k + 1 ) ) ) ` ( Z |` J ) ) ) ( -g ` R ) ( N ` ( ( ( k + 1 ) .^ ( N ` .1. ) ) .x. ( ( Z ` Y ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) ) ) ) ) = ( ( ( ( k + 1 ) .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( k + 1 ) ) ) ` ( Z |` J ) ) ) ( -g ` ( Scalar ` W ) ) ( ( ( k .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) ) .x. ( Z ` Y ) ) ) ) : No typesetting found for |- ( ( ph /\ k e. ( 0 ..^ ( # ` J ) ) ) -> ( ( ( ( k + 1 ) .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( k + 1 ) ) ) ` ( Z |` J ) ) ) ( -g ` R ) ( N ` ( ( ( k + 1 ) .^ ( N ` .1. ) ) .x. ( ( Z ` Y ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) ) ) ) ) = ( ( ( ( k + 1 ) .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( k + 1 ) ) ) ` ( Z |` J ) ) ) ( -g ` ( Scalar ` W ) ) ( ( ( k .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) ) .x. ( Z ` Y ) ) ) ) with typecode |-
404 385 403 eqtrd Could not format ( ( ph /\ k e. ( 0 ..^ ( # ` J ) ) ) -> ( ( ( k + 1 ) .^ ( N ` .1. ) ) .x. ( ( Q ` ( E ` ( k + 1 ) ) ) ` Z ) ) = ( ( ( ( k + 1 ) .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( k + 1 ) ) ) ` ( Z |` J ) ) ) ( -g ` ( Scalar ` W ) ) ( ( ( k .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) ) .x. ( Z ` Y ) ) ) ) : No typesetting found for |- ( ( ph /\ k e. ( 0 ..^ ( # ` J ) ) ) -> ( ( ( k + 1 ) .^ ( N ` .1. ) ) .x. ( ( Q ` ( E ` ( k + 1 ) ) ) ` Z ) ) = ( ( ( ( k + 1 ) .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( k + 1 ) ) ) ` ( Z |` J ) ) ) ( -g ` ( Scalar ` W ) ) ( ( ( k .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) ) .x. ( Z ` Y ) ) ) ) with typecode |-
405 404 oveq1d Could not format ( ( ph /\ k e. ( 0 ..^ ( # ` J ) ) ) -> ( ( ( ( k + 1 ) .^ ( N ` .1. ) ) .x. ( ( Q ` ( E ` ( k + 1 ) ) ) ` Z ) ) ( .s ` W ) ( ( H - ( k + 1 ) ) ( .g ` M ) X ) ) = ( ( ( ( ( k + 1 ) .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( k + 1 ) ) ) ` ( Z |` J ) ) ) ( -g ` ( Scalar ` W ) ) ( ( ( k .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) ) .x. ( Z ` Y ) ) ) ( .s ` W ) ( ( H - ( k + 1 ) ) ( .g ` M ) X ) ) ) : No typesetting found for |- ( ( ph /\ k e. ( 0 ..^ ( # ` J ) ) ) -> ( ( ( ( k + 1 ) .^ ( N ` .1. ) ) .x. ( ( Q ` ( E ` ( k + 1 ) ) ) ` Z ) ) ( .s ` W ) ( ( H - ( k + 1 ) ) ( .g ` M ) X ) ) = ( ( ( ( ( k + 1 ) .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( k + 1 ) ) ) ` ( Z |` J ) ) ) ( -g ` ( Scalar ` W ) ) ( ( ( k .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) ) .x. ( Z ` Y ) ) ) ( .s ` W ) ( ( H - ( k + 1 ) ) ( .g ` M ) X ) ) ) with typecode |-
406 eqid - Scalar W = - Scalar W
407 350 101 syl φ k 0 ..^ J W LMod
408 64 adantr φ k 0 ..^ J B = Base Scalar W
409 382 408 eleqtrd Could not format ( ( ph /\ k e. ( 0 ..^ ( # ` J ) ) ) -> ( ( ( k + 1 ) .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( k + 1 ) ) ) ` ( Z |` J ) ) ) e. ( Base ` ( Scalar ` W ) ) ) : No typesetting found for |- ( ( ph /\ k e. ( 0 ..^ ( # ` J ) ) ) -> ( ( ( k + 1 ) .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( k + 1 ) ) ) ` ( Z |` J ) ) ) e. ( Base ` ( Scalar ` W ) ) ) with typecode |-
410 2 9 350 393 369 ringcld Could not format ( ( ph /\ k e. ( 0 ..^ ( # ` J ) ) ) -> ( ( k .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) ) e. B ) : No typesetting found for |- ( ( ph /\ k e. ( 0 ..^ ( # ` J ) ) ) -> ( ( k .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) ) e. B ) with typecode |-
411 2 9 350 410 367 ringcld Could not format ( ( ph /\ k e. ( 0 ..^ ( # ` J ) ) ) -> ( ( ( k .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) ) .x. ( Z ` Y ) ) e. B ) : No typesetting found for |- ( ( ph /\ k e. ( 0 ..^ ( # ` J ) ) ) -> ( ( ( k .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) ) .x. ( Z ` Y ) ) e. B ) with typecode |-
412 411 408 eleqtrd Could not format ( ( ph /\ k e. ( 0 ..^ ( # ` J ) ) ) -> ( ( ( k .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) ) .x. ( Z ` Y ) ) e. ( Base ` ( Scalar ` W ) ) ) : No typesetting found for |- ( ( ph /\ k e. ( 0 ..^ ( # ` J ) ) ) -> ( ( ( k .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) ) .x. ( Z ` Y ) ) e. ( Base ` ( Scalar ` W ) ) ) with typecode |-
413 117 adantr φ k 0 ..^ J M Mnd
414 fz0ssnn0 0 H 0
415 fzossfz 0 ..^ H 0 H
416 fzssp1 1 J 1 J + 1
417 297 oveq2d φ 1 H = 1 J + 1
418 416 417 sseqtrrid φ 1 J 1 H
419 418 adantr φ k 0 ..^ J 1 J 1 H
420 360 99 syl φ k 0 ..^ J J 0
421 fz0add1fz1 J 0 k 0 ..^ J k + 1 1 J
422 420 353 421 syl2anc φ k 0 ..^ J k + 1 1 J
423 419 422 sseldd φ k 0 ..^ J k + 1 1 H
424 ubmelfzo k + 1 1 H H k + 1 0 ..^ H
425 423 424 syl φ k 0 ..^ J H k + 1 0 ..^ H
426 415 425 sselid φ k 0 ..^ J H k + 1 0 H
427 414 426 sselid φ k 0 ..^ J H k + 1 0
428 350 47 syl φ k 0 ..^ J X Base W
429 32 81 413 427 428 mulgnn0cld φ k 0 ..^ J H k + 1 M X Base W
430 31 80 50 51 3 406 407 409 412 429 lmodsubdir Could not format ( ( ph /\ k e. ( 0 ..^ ( # ` J ) ) ) -> ( ( ( ( ( k + 1 ) .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( k + 1 ) ) ) ` ( Z |` J ) ) ) ( -g ` ( Scalar ` W ) ) ( ( ( k .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) ) .x. ( Z ` Y ) ) ) ( .s ` W ) ( ( H - ( k + 1 ) ) ( .g ` M ) X ) ) = ( ( ( ( ( k + 1 ) .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( k + 1 ) ) ) ` ( Z |` J ) ) ) ( .s ` W ) ( ( H - ( k + 1 ) ) ( .g ` M ) X ) ) .- ( ( ( ( k .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) ) .x. ( Z ` Y ) ) ( .s ` W ) ( ( H - ( k + 1 ) ) ( .g ` M ) X ) ) ) ) : No typesetting found for |- ( ( ph /\ k e. ( 0 ..^ ( # ` J ) ) ) -> ( ( ( ( ( k + 1 ) .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( k + 1 ) ) ) ` ( Z |` J ) ) ) ( -g ` ( Scalar ` W ) ) ( ( ( k .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) ) .x. ( Z ` Y ) ) ) ( .s ` W ) ( ( H - ( k + 1 ) ) ( .g ` M ) X ) ) = ( ( ( ( ( k + 1 ) .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( k + 1 ) ) ) ` ( Z |` J ) ) ) ( .s ` W ) ( ( H - ( k + 1 ) ) ( .g ` M ) X ) ) .- ( ( ( ( k .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) ) .x. ( Z ` Y ) ) ( .s ` W ) ( ( H - ( k + 1 ) ) ( .g ` M ) X ) ) ) ) with typecode |-
431 297 adantr φ k 0 ..^ J H = J + 1
432 431 oveq1d φ k 0 ..^ J H k + 1 = J + 1 - k + 1
433 172 adantr φ k 0 ..^ J J
434 1cnd φ k 0 ..^ J 1
435 357 nn0cnd φ k 0 ..^ J k + 1
436 433 434 435 addsubd φ k 0 ..^ J J + 1 - k + 1 = J - k + 1 + 1
437 432 436 eqtrd φ k 0 ..^ J H k + 1 = J - k + 1 + 1
438 437 oveq1d φ k 0 ..^ J H k + 1 M X = J - k + 1 + 1 M X
439 fzofzp1 k 0 ..^ J k + 1 0 J
440 439 adantl φ k 0 ..^ J k + 1 0 J
441 fznn0sub2 k + 1 0 J J k + 1 0 J
442 440 441 syl φ k 0 ..^ J J k + 1 0 J
443 110 442 sselid φ k 0 ..^ J J k + 1 0
444 32 81 34 mulgnn0p1 M Mnd J k + 1 0 X Base W J - k + 1 + 1 M X = J k + 1 M X W X
445 413 443 428 444 syl3anc φ k 0 ..^ J J - k + 1 + 1 M X = J k + 1 M X W X
446 438 445 eqtrd φ k 0 ..^ J H k + 1 M X = J k + 1 M X W X
447 446 oveq2d Could not format ( ( ph /\ k e. ( 0 ..^ ( # ` J ) ) ) -> ( ( ( ( k + 1 ) .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( k + 1 ) ) ) ` ( Z |` J ) ) ) ( .s ` W ) ( ( H - ( k + 1 ) ) ( .g ` M ) X ) ) = ( ( ( ( k + 1 ) .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( k + 1 ) ) ) ` ( Z |` J ) ) ) ( .s ` W ) ( ( ( ( # ` J ) - ( k + 1 ) ) ( .g ` M ) X ) ( .r ` W ) X ) ) ) : No typesetting found for |- ( ( ph /\ k e. ( 0 ..^ ( # ` J ) ) ) -> ( ( ( ( k + 1 ) .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( k + 1 ) ) ) ` ( Z |` J ) ) ) ( .s ` W ) ( ( H - ( k + 1 ) ) ( .g ` M ) X ) ) = ( ( ( ( k + 1 ) .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( k + 1 ) ) ) ` ( Z |` J ) ) ) ( .s ` W ) ( ( ( ( # ` J ) - ( k + 1 ) ) ( .g ` M ) X ) ( .r ` W ) X ) ) ) with typecode |-
448 361 52 syl φ k 0 ..^ J W AssAlg
449 32 81 413 443 428 mulgnn0cld φ k 0 ..^ J J k + 1 M X Base W
450 31 50 51 80 33 448 409 449 428 assaassd Could not format ( ( ph /\ k e. ( 0 ..^ ( # ` J ) ) ) -> ( ( ( ( ( k + 1 ) .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( k + 1 ) ) ) ` ( Z |` J ) ) ) ( .s ` W ) ( ( ( # ` J ) - ( k + 1 ) ) ( .g ` M ) X ) ) ( .r ` W ) X ) = ( ( ( ( k + 1 ) .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( k + 1 ) ) ) ` ( Z |` J ) ) ) ( .s ` W ) ( ( ( ( # ` J ) - ( k + 1 ) ) ( .g ` M ) X ) ( .r ` W ) X ) ) ) : No typesetting found for |- ( ( ph /\ k e. ( 0 ..^ ( # ` J ) ) ) -> ( ( ( ( ( k + 1 ) .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( k + 1 ) ) ) ` ( Z |` J ) ) ) ( .s ` W ) ( ( ( # ` J ) - ( k + 1 ) ) ( .g ` M ) X ) ) ( .r ` W ) X ) = ( ( ( ( k + 1 ) .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( k + 1 ) ) ) ` ( Z |` J ) ) ) ( .s ` W ) ( ( ( ( # ` J ) - ( k + 1 ) ) ( .g ` M ) X ) ( .r ` W ) X ) ) ) with typecode |-
451 447 450 eqtr4d Could not format ( ( ph /\ k e. ( 0 ..^ ( # ` J ) ) ) -> ( ( ( ( k + 1 ) .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( k + 1 ) ) ) ` ( Z |` J ) ) ) ( .s ` W ) ( ( H - ( k + 1 ) ) ( .g ` M ) X ) ) = ( ( ( ( ( k + 1 ) .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( k + 1 ) ) ) ` ( Z |` J ) ) ) ( .s ` W ) ( ( ( # ` J ) - ( k + 1 ) ) ( .g ` M ) X ) ) ( .r ` W ) X ) ) : No typesetting found for |- ( ( ph /\ k e. ( 0 ..^ ( # ` J ) ) ) -> ( ( ( ( k + 1 ) .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( k + 1 ) ) ) ` ( Z |` J ) ) ) ( .s ` W ) ( ( H - ( k + 1 ) ) ( .g ` M ) X ) ) = ( ( ( ( ( k + 1 ) .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( k + 1 ) ) ) ` ( Z |` J ) ) ) ( .s ` W ) ( ( ( # ` J ) - ( k + 1 ) ) ( .g ` M ) X ) ) ( .r ` W ) X ) ) with typecode |-
452 73 adantr φ k 0 ..^ J Z Y Base Scalar W
453 410 408 eleqtrd Could not format ( ( ph /\ k e. ( 0 ..^ ( # ` J ) ) ) -> ( ( k .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) ) e. ( Base ` ( Scalar ` W ) ) ) : No typesetting found for |- ( ( ph /\ k e. ( 0 ..^ ( # ` J ) ) ) -> ( ( k .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) ) e. ( Base ` ( Scalar ` W ) ) ) with typecode |-
454 fznn0sub2 k 0 J J k 0 J
455 354 454 syl φ k 0 ..^ J J k 0 J
456 110 455 sselid φ k 0 ..^ J J k 0
457 32 81 413 456 428 mulgnn0cld φ k 0 ..^ J J k M X Base W
458 31 50 80 51 337 lmodvsass Could not format ( ( W e. LMod /\ ( ( Z ` Y ) e. ( Base ` ( Scalar ` W ) ) /\ ( ( k .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) ) e. ( Base ` ( Scalar ` W ) ) /\ ( ( ( # ` J ) - k ) ( .g ` M ) X ) e. ( Base ` W ) ) ) -> ( ( ( Z ` Y ) ( .r ` ( Scalar ` W ) ) ( ( k .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) ) ) ( .s ` W ) ( ( ( # ` J ) - k ) ( .g ` M ) X ) ) = ( ( Z ` Y ) ( .s ` W ) ( ( ( k .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) ) ( .s ` W ) ( ( ( # ` J ) - k ) ( .g ` M ) X ) ) ) ) : No typesetting found for |- ( ( W e. LMod /\ ( ( Z ` Y ) e. ( Base ` ( Scalar ` W ) ) /\ ( ( k .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) ) e. ( Base ` ( Scalar ` W ) ) /\ ( ( ( # ` J ) - k ) ( .g ` M ) X ) e. ( Base ` W ) ) ) -> ( ( ( Z ` Y ) ( .r ` ( Scalar ` W ) ) ( ( k .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) ) ) ( .s ` W ) ( ( ( # ` J ) - k ) ( .g ` M ) X ) ) = ( ( Z ` Y ) ( .s ` W ) ( ( ( k .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) ) ( .s ` W ) ( ( ( # ` J ) - k ) ( .g ` M ) X ) ) ) ) with typecode |-
459 407 452 453 457 458 syl13anc Could not format ( ( ph /\ k e. ( 0 ..^ ( # ` J ) ) ) -> ( ( ( Z ` Y ) ( .r ` ( Scalar ` W ) ) ( ( k .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) ) ) ( .s ` W ) ( ( ( # ` J ) - k ) ( .g ` M ) X ) ) = ( ( Z ` Y ) ( .s ` W ) ( ( ( k .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) ) ( .s ` W ) ( ( ( # ` J ) - k ) ( .g ` M ) X ) ) ) ) : No typesetting found for |- ( ( ph /\ k e. ( 0 ..^ ( # ` J ) ) ) -> ( ( ( Z ` Y ) ( .r ` ( Scalar ` W ) ) ( ( k .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) ) ) ( .s ` W ) ( ( ( # ` J ) - k ) ( .g ` M ) X ) ) = ( ( Z ` Y ) ( .s ` W ) ( ( ( k .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) ) ( .s ` W ) ( ( ( # ` J ) - k ) ( .g ` M ) X ) ) ) ) with typecode |-
460 2 9 361 410 367 crngcomd Could not format ( ( ph /\ k e. ( 0 ..^ ( # ` J ) ) ) -> ( ( ( k .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) ) .x. ( Z ` Y ) ) = ( ( Z ` Y ) .x. ( ( k .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) ) ) ) : No typesetting found for |- ( ( ph /\ k e. ( 0 ..^ ( # ` J ) ) ) -> ( ( ( k .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) ) .x. ( Z ` Y ) ) = ( ( Z ` Y ) .x. ( ( k .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) ) ) ) with typecode |-
461 305 oveqd Could not format ( ph -> ( ( Z ` Y ) .x. ( ( k .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) ) ) = ( ( Z ` Y ) ( .r ` ( Scalar ` W ) ) ( ( k .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) ) ) ) : No typesetting found for |- ( ph -> ( ( Z ` Y ) .x. ( ( k .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) ) ) = ( ( Z ` Y ) ( .r ` ( Scalar ` W ) ) ( ( k .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) ) ) ) with typecode |-
462 461 adantr Could not format ( ( ph /\ k e. ( 0 ..^ ( # ` J ) ) ) -> ( ( Z ` Y ) .x. ( ( k .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) ) ) = ( ( Z ` Y ) ( .r ` ( Scalar ` W ) ) ( ( k .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) ) ) ) : No typesetting found for |- ( ( ph /\ k e. ( 0 ..^ ( # ` J ) ) ) -> ( ( Z ` Y ) .x. ( ( k .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) ) ) = ( ( Z ` Y ) ( .r ` ( Scalar ` W ) ) ( ( k .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) ) ) ) with typecode |-
463 460 462 eqtrd Could not format ( ( ph /\ k e. ( 0 ..^ ( # ` J ) ) ) -> ( ( ( k .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) ) .x. ( Z ` Y ) ) = ( ( Z ` Y ) ( .r ` ( Scalar ` W ) ) ( ( k .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) ) ) ) : No typesetting found for |- ( ( ph /\ k e. ( 0 ..^ ( # ` J ) ) ) -> ( ( ( k .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) ) .x. ( Z ` Y ) ) = ( ( Z ` Y ) ( .r ` ( Scalar ` W ) ) ( ( k .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) ) ) ) with typecode |-
464 292 adantr φ k 0 ..^ J J = H 1
465 464 oveq1d φ k 0 ..^ J J k = H - 1 - k
466 294 adantr φ k 0 ..^ J H
467 355 nn0cnd φ k 0 ..^ J k
468 466 467 434 sub32d φ k 0 ..^ J H - k - 1 = H - 1 - k
469 466 467 434 subsub4d φ k 0 ..^ J H - k - 1 = H k + 1
470 465 468 469 3eqtr2rd φ k 0 ..^ J H k + 1 = J k
471 470 oveq1d φ k 0 ..^ J H k + 1 M X = J k M X
472 463 471 oveq12d Could not format ( ( ph /\ k e. ( 0 ..^ ( # ` J ) ) ) -> ( ( ( ( k .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) ) .x. ( Z ` Y ) ) ( .s ` W ) ( ( H - ( k + 1 ) ) ( .g ` M ) X ) ) = ( ( ( Z ` Y ) ( .r ` ( Scalar ` W ) ) ( ( k .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) ) ) ( .s ` W ) ( ( ( # ` J ) - k ) ( .g ` M ) X ) ) ) : No typesetting found for |- ( ( ph /\ k e. ( 0 ..^ ( # ` J ) ) ) -> ( ( ( ( k .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) ) .x. ( Z ` Y ) ) ( .s ` W ) ( ( H - ( k + 1 ) ) ( .g ` M ) X ) ) = ( ( ( Z ` Y ) ( .r ` ( Scalar ` W ) ) ( ( k .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) ) ) ( .s ` W ) ( ( ( # ` J ) - k ) ( .g ` M ) X ) ) ) with typecode |-
473 1 31 2 80 350 410 457 ply1vscl Could not format ( ( ph /\ k e. ( 0 ..^ ( # ` J ) ) ) -> ( ( ( k .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) ) ( .s ` W ) ( ( ( # ` J ) - k ) ( .g ` M ) X ) ) e. ( Base ` W ) ) : No typesetting found for |- ( ( ph /\ k e. ( 0 ..^ ( # ` J ) ) ) -> ( ( ( k .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) ) ( .s ` W ) ( ( ( # ` J ) - k ) ( .g ` M ) X ) ) e. ( Base ` W ) ) with typecode |-
474 11 50 51 31 33 80 asclmul2 Could not format ( ( W e. AssAlg /\ ( Z ` Y ) e. ( Base ` ( Scalar ` W ) ) /\ ( ( ( k .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) ) ( .s ` W ) ( ( ( # ` J ) - k ) ( .g ` M ) X ) ) e. ( Base ` W ) ) -> ( ( ( ( k .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) ) ( .s ` W ) ( ( ( # ` J ) - k ) ( .g ` M ) X ) ) ( .r ` W ) ( A ` ( Z ` Y ) ) ) = ( ( Z ` Y ) ( .s ` W ) ( ( ( k .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) ) ( .s ` W ) ( ( ( # ` J ) - k ) ( .g ` M ) X ) ) ) ) : No typesetting found for |- ( ( W e. AssAlg /\ ( Z ` Y ) e. ( Base ` ( Scalar ` W ) ) /\ ( ( ( k .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) ) ( .s ` W ) ( ( ( # ` J ) - k ) ( .g ` M ) X ) ) e. ( Base ` W ) ) -> ( ( ( ( k .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) ) ( .s ` W ) ( ( ( # ` J ) - k ) ( .g ` M ) X ) ) ( .r ` W ) ( A ` ( Z ` Y ) ) ) = ( ( Z ` Y ) ( .s ` W ) ( ( ( k .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) ) ( .s ` W ) ( ( ( # ` J ) - k ) ( .g ` M ) X ) ) ) ) with typecode |-
475 448 452 473 474 syl3anc Could not format ( ( ph /\ k e. ( 0 ..^ ( # ` J ) ) ) -> ( ( ( ( k .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) ) ( .s ` W ) ( ( ( # ` J ) - k ) ( .g ` M ) X ) ) ( .r ` W ) ( A ` ( Z ` Y ) ) ) = ( ( Z ` Y ) ( .s ` W ) ( ( ( k .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) ) ( .s ` W ) ( ( ( # ` J ) - k ) ( .g ` M ) X ) ) ) ) : No typesetting found for |- ( ( ph /\ k e. ( 0 ..^ ( # ` J ) ) ) -> ( ( ( ( k .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) ) ( .s ` W ) ( ( ( # ` J ) - k ) ( .g ` M ) X ) ) ( .r ` W ) ( A ` ( Z ` Y ) ) ) = ( ( Z ` Y ) ( .s ` W ) ( ( ( k .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) ) ( .s ` W ) ( ( ( # ` J ) - k ) ( .g ` M ) X ) ) ) ) with typecode |-
476 459 472 475 3eqtr4d Could not format ( ( ph /\ k e. ( 0 ..^ ( # ` J ) ) ) -> ( ( ( ( k .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) ) .x. ( Z ` Y ) ) ( .s ` W ) ( ( H - ( k + 1 ) ) ( .g ` M ) X ) ) = ( ( ( ( k .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) ) ( .s ` W ) ( ( ( # ` J ) - k ) ( .g ` M ) X ) ) ( .r ` W ) ( A ` ( Z ` Y ) ) ) ) : No typesetting found for |- ( ( ph /\ k e. ( 0 ..^ ( # ` J ) ) ) -> ( ( ( ( k .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) ) .x. ( Z ` Y ) ) ( .s ` W ) ( ( H - ( k + 1 ) ) ( .g ` M ) X ) ) = ( ( ( ( k .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) ) ( .s ` W ) ( ( ( # ` J ) - k ) ( .g ` M ) X ) ) ( .r ` W ) ( A ` ( Z ` Y ) ) ) ) with typecode |-
477 451 476 oveq12d Could not format ( ( ph /\ k e. ( 0 ..^ ( # ` J ) ) ) -> ( ( ( ( ( k + 1 ) .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( k + 1 ) ) ) ` ( Z |` J ) ) ) ( .s ` W ) ( ( H - ( k + 1 ) ) ( .g ` M ) X ) ) .- ( ( ( ( k .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) ) .x. ( Z ` Y ) ) ( .s ` W ) ( ( H - ( k + 1 ) ) ( .g ` M ) X ) ) ) = ( ( ( ( ( ( k + 1 ) .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( k + 1 ) ) ) ` ( Z |` J ) ) ) ( .s ` W ) ( ( ( # ` J ) - ( k + 1 ) ) ( .g ` M ) X ) ) ( .r ` W ) X ) .- ( ( ( ( k .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) ) ( .s ` W ) ( ( ( # ` J ) - k ) ( .g ` M ) X ) ) ( .r ` W ) ( A ` ( Z ` Y ) ) ) ) ) : No typesetting found for |- ( ( ph /\ k e. ( 0 ..^ ( # ` J ) ) ) -> ( ( ( ( ( k + 1 ) .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( k + 1 ) ) ) ` ( Z |` J ) ) ) ( .s ` W ) ( ( H - ( k + 1 ) ) ( .g ` M ) X ) ) .- ( ( ( ( k .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) ) .x. ( Z ` Y ) ) ( .s ` W ) ( ( H - ( k + 1 ) ) ( .g ` M ) X ) ) ) = ( ( ( ( ( ( k + 1 ) .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( k + 1 ) ) ) ` ( Z |` J ) ) ) ( .s ` W ) ( ( ( # ` J ) - ( k + 1 ) ) ( .g ` M ) X ) ) ( .r ` W ) X ) .- ( ( ( ( k .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) ) ( .s ` W ) ( ( ( # ` J ) - k ) ( .g ` M ) X ) ) ( .r ` W ) ( A ` ( Z ` Y ) ) ) ) ) with typecode |-
478 405 430 477 3eqtrd Could not format ( ( ph /\ k e. ( 0 ..^ ( # ` J ) ) ) -> ( ( ( ( k + 1 ) .^ ( N ` .1. ) ) .x. ( ( Q ` ( E ` ( k + 1 ) ) ) ` Z ) ) ( .s ` W ) ( ( H - ( k + 1 ) ) ( .g ` M ) X ) ) = ( ( ( ( ( ( k + 1 ) .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( k + 1 ) ) ) ` ( Z |` J ) ) ) ( .s ` W ) ( ( ( # ` J ) - ( k + 1 ) ) ( .g ` M ) X ) ) ( .r ` W ) X ) .- ( ( ( ( k .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) ) ( .s ` W ) ( ( ( # ` J ) - k ) ( .g ` M ) X ) ) ( .r ` W ) ( A ` ( Z ` Y ) ) ) ) ) : No typesetting found for |- ( ( ph /\ k e. ( 0 ..^ ( # ` J ) ) ) -> ( ( ( ( k + 1 ) .^ ( N ` .1. ) ) .x. ( ( Q ` ( E ` ( k + 1 ) ) ) ` Z ) ) ( .s ` W ) ( ( H - ( k + 1 ) ) ( .g ` M ) X ) ) = ( ( ( ( ( ( k + 1 ) .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( k + 1 ) ) ) ` ( Z |` J ) ) ) ( .s ` W ) ( ( ( # ` J ) - ( k + 1 ) ) ( .g ` M ) X ) ) ( .r ` W ) X ) .- ( ( ( ( k .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) ) ( .s ` W ) ( ( ( # ` J ) - k ) ( .g ` M ) X ) ) ( .r ` W ) ( A ` ( Z ` Y ) ) ) ) ) with typecode |-
479 31 193 3 33 43 48 74 100 212 219 226 233 240 349 478 gsummulsubdishift2s Could not format ( ph -> ( ( W gsum ( k e. ( 0 ... ( # ` J ) ) |-> ( ( ( k .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) ) ( .s ` W ) ( ( ( # ` J ) - k ) ( .g ` M ) X ) ) ) ) ( .r ` W ) ( X .- ( A ` ( Z ` Y ) ) ) ) = ( ( W gsum ( k e. ( 0 ..^ ( # ` J ) ) |-> ( ( ( ( k + 1 ) .^ ( N ` .1. ) ) .x. ( ( Q ` ( E ` ( k + 1 ) ) ) ` Z ) ) ( .s ` W ) ( ( H - ( k + 1 ) ) ( .g ` M ) X ) ) ) ) ( +g ` W ) ( ( ( ( 0 .^ ( N ` .1. ) ) .x. ( 1r ` R ) ) ( .s ` W ) ( H ( .g ` M ) X ) ) ( +g ` W ) ( ( ( H .^ ( N ` .1. ) ) .x. ( ( Q ` ( E ` H ) ) ` Z ) ) ( .s ` W ) ( 0 ( .g ` M ) X ) ) ) ) ) : No typesetting found for |- ( ph -> ( ( W gsum ( k e. ( 0 ... ( # ` J ) ) |-> ( ( ( k .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) ) ( .s ` W ) ( ( ( # ` J ) - k ) ( .g ` M ) X ) ) ) ) ( .r ` W ) ( X .- ( A ` ( Z ` Y ) ) ) ) = ( ( W gsum ( k e. ( 0 ..^ ( # ` J ) ) |-> ( ( ( ( k + 1 ) .^ ( N ` .1. ) ) .x. ( ( Q ` ( E ` ( k + 1 ) ) ) ` Z ) ) ( .s ` W ) ( ( H - ( k + 1 ) ) ( .g ` M ) X ) ) ) ) ( +g ` W ) ( ( ( ( 0 .^ ( N ` .1. ) ) .x. ( 1r ` R ) ) ( .s ` W ) ( H ( .g ` M ) X ) ) ( +g ` W ) ( ( ( H .^ ( N ` .1. ) ) .x. ( ( Q ` ( E ` H ) ) ` Z ) ) ( .s ` W ) ( 0 ( .g ` M ) X ) ) ) ) ) with typecode |-
480 46 adantr φ k 0 J R Ring
481 480 151 syl φ k 0 J mulGrp R Mnd
482 110 a1i φ 0 J 0
483 482 sselda φ k 0 J k 0
484 158 adantr φ k 0 J N 1 ˙ B
485 150 12 481 483 484 mulgnn0cld φ k 0 J k × ˙ N 1 ˙ B
486 41 adantr φ k 0 J J Fin
487 35 adantr φ k 0 J R CRing
488 166 486 480 483 163 esplympl Could not format ( ( ph /\ k e. ( 0 ... ( # ` J ) ) ) -> ( ( J eSymPoly R ) ` k ) e. ( Base ` ( J mPoly R ) ) ) : No typesetting found for |- ( ( ph /\ k e. ( 0 ... ( # ` J ) ) ) -> ( ( J eSymPoly R ) ` k ) e. ( Base ` ( J mPoly R ) ) ) with typecode |-
489 143 adantr φ k 0 J Z J B J
490 161 162 163 2 486 487 488 489 evlcl Could not format ( ( ph /\ k e. ( 0 ... ( # ` J ) ) ) -> ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) e. B ) : No typesetting found for |- ( ( ph /\ k e. ( 0 ... ( # ` J ) ) ) -> ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) e. B ) with typecode |-
491 2 9 480 485 490 ringcld Could not format ( ( ph /\ k e. ( 0 ... ( # ` J ) ) ) -> ( ( k .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) ) e. B ) : No typesetting found for |- ( ( ph /\ k e. ( 0 ... ( # ` J ) ) ) -> ( ( k .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) ) e. B ) with typecode |-
492 117 adantr φ k 0 J M Mnd
493 454 adantl φ k 0 J J k 0 J
494 110 493 sselid φ k 0 J J k 0
495 48 adantr φ k 0 J X Base W
496 32 81 492 494 495 mulgnn0cld φ k 0 J J k M X Base W
497 1 31 2 80 480 491 496 ply1vscl Could not format ( ( ph /\ k e. ( 0 ... ( # ` J ) ) ) -> ( ( ( k .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) ) ( .s ` W ) ( ( ( # ` J ) - k ) ( .g ` M ) X ) ) e. ( Base ` W ) ) : No typesetting found for |- ( ( ph /\ k e. ( 0 ... ( # ` J ) ) ) -> ( ( ( k .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) ) ( .s ` W ) ( ( ( # ` J ) - k ) ( .g ` M ) X ) ) e. ( Base ` W ) ) with typecode |-
498 oveq1 k = J l k × ˙ N 1 ˙ = J l × ˙ N 1 ˙
499 2fveq3 Could not format ( k = ( ( # ` J ) - l ) -> ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) = ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( ( # ` J ) - l ) ) ) ) : No typesetting found for |- ( k = ( ( # ` J ) - l ) -> ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) = ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( ( # ` J ) - l ) ) ) ) with typecode |-
500 499 fveq1d Could not format ( k = ( ( # ` J ) - l ) -> ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) = ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( ( # ` J ) - l ) ) ) ` ( Z |` J ) ) ) : No typesetting found for |- ( k = ( ( # ` J ) - l ) -> ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) = ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( ( # ` J ) - l ) ) ) ` ( Z |` J ) ) ) with typecode |-
501 498 500 oveq12d Could not format ( k = ( ( # ` J ) - l ) -> ( ( k .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) ) = ( ( ( ( # ` J ) - l ) .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( ( # ` J ) - l ) ) ) ` ( Z |` J ) ) ) ) : No typesetting found for |- ( k = ( ( # ` J ) - l ) -> ( ( k .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) ) = ( ( ( ( # ` J ) - l ) .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( ( # ` J ) - l ) ) ) ` ( Z |` J ) ) ) ) with typecode |-
502 501 adantl Could not format ( ( ( ph /\ l e. ( 0 ... ( # ` J ) ) ) /\ k = ( ( # ` J ) - l ) ) -> ( ( k .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) ) = ( ( ( ( # ` J ) - l ) .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( ( # ` J ) - l ) ) ) ` ( Z |` J ) ) ) ) : No typesetting found for |- ( ( ( ph /\ l e. ( 0 ... ( # ` J ) ) ) /\ k = ( ( # ` J ) - l ) ) -> ( ( k .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) ) = ( ( ( ( # ` J ) - l ) .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( ( # ` J ) - l ) ) ) ` ( Z |` J ) ) ) ) with typecode |-
503 simpr φ l 0 J k = J l k = J l
504 503 oveq2d φ l 0 J k = J l J k = J J l
505 172 ad2antrr φ l 0 J k = J l J
506 112 adantr φ l 0 J k = J l l 0
507 506 nn0cnd φ l 0 J k = J l l
508 505 507 nncand φ l 0 J k = J l J J l = l
509 504 508 eqtrd φ l 0 J k = J l J k = l
510 509 oveq1d φ l 0 J k = J l J k M X = l M X
511 502 510 oveq12d Could not format ( ( ( ph /\ l e. ( 0 ... ( # ` J ) ) ) /\ k = ( ( # ` J ) - l ) ) -> ( ( ( k .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) ) ( .s ` W ) ( ( ( # ` J ) - k ) ( .g ` M ) X ) ) = ( ( ( ( ( # ` J ) - l ) .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( ( # ` J ) - l ) ) ) ` ( Z |` J ) ) ) ( .s ` W ) ( l ( .g ` M ) X ) ) ) : No typesetting found for |- ( ( ( ph /\ l e. ( 0 ... ( # ` J ) ) ) /\ k = ( ( # ` J ) - l ) ) -> ( ( ( k .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) ) ( .s ` W ) ( ( ( # ` J ) - k ) ( .g ` M ) X ) ) = ( ( ( ( ( # ` J ) - l ) .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( ( # ` J ) - l ) ) ) ` ( Z |` J ) ) ) ( .s ` W ) ( l ( .g ` M ) X ) ) ) with typecode |-
512 31 98 100 497 511 gsummptrev Could not format ( ph -> ( W gsum ( k e. ( 0 ... ( # ` J ) ) |-> ( ( ( k .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) ) ( .s ` W ) ( ( ( # ` J ) - k ) ( .g ` M ) X ) ) ) ) = ( W gsum ( l e. ( 0 ... ( # ` J ) ) |-> ( ( ( ( ( # ` J ) - l ) .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( ( # ` J ) - l ) ) ) ` ( Z |` J ) ) ) ( .s ` W ) ( l ( .g ` M ) X ) ) ) ) ) : No typesetting found for |- ( ph -> ( W gsum ( k e. ( 0 ... ( # ` J ) ) |-> ( ( ( k .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) ) ( .s ` W ) ( ( ( # ` J ) - k ) ( .g ` M ) X ) ) ) ) = ( W gsum ( l e. ( 0 ... ( # ` J ) ) |-> ( ( ( ( ( # ` J ) - l ) .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( ( # ` J ) - l ) ) ) ` ( Z |` J ) ) ) ( .s ` W ) ( l ( .g ` M ) X ) ) ) ) ) with typecode |-
513 512 oveq1d Could not format ( ph -> ( ( W gsum ( k e. ( 0 ... ( # ` J ) ) |-> ( ( ( k .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) ) ( .s ` W ) ( ( ( # ` J ) - k ) ( .g ` M ) X ) ) ) ) ( .r ` W ) ( X .- ( A ` ( Z ` Y ) ) ) ) = ( ( W gsum ( l e. ( 0 ... ( # ` J ) ) |-> ( ( ( ( ( # ` J ) - l ) .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( ( # ` J ) - l ) ) ) ` ( Z |` J ) ) ) ( .s ` W ) ( l ( .g ` M ) X ) ) ) ) ( .r ` W ) ( X .- ( A ` ( Z ` Y ) ) ) ) ) : No typesetting found for |- ( ph -> ( ( W gsum ( k e. ( 0 ... ( # ` J ) ) |-> ( ( ( k .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` k ) ) ` ( Z |` J ) ) ) ( .s ` W ) ( ( ( # ` J ) - k ) ( .g ` M ) X ) ) ) ) ( .r ` W ) ( X .- ( A ` ( Z ` Y ) ) ) ) = ( ( W gsum ( l e. ( 0 ... ( # ` J ) ) |-> ( ( ( ( ( # ` J ) - l ) .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( ( # ` J ) - l ) ) ) ` ( Z |` J ) ) ) ( .s ` W ) ( l ( .g ` M ) X ) ) ) ) ( .r ` W ) ( X .- ( A ` ( Z ` Y ) ) ) ) ) with typecode |-
514 46 adantr φ l 1 J R Ring
515 514 151 syl φ l 1 J mulGrp R Mnd
516 fz1ssfz0 1 J 0 J
517 516 110 sstri 1 J 0
518 517 a1i φ 1 J 0
519 518 sselda φ l 1 J l 0
520 158 adantr φ l 1 J N 1 ˙ B
521 150 12 515 519 520 mulgnn0cld φ l 1 J l × ˙ N 1 ˙ B
522 14 adantr φ l 1 J I Fin
523 35 adantr φ l 1 J R CRing
524 6 fveq1i Could not format ( E ` l ) = ( ( I eSymPoly R ) ` l ) : No typesetting found for |- ( E ` l ) = ( ( I eSymPoly R ) ` l ) with typecode |-
525 257 522 514 519 255 esplympl Could not format ( ( ph /\ l e. ( 1 ... ( # ` J ) ) ) -> ( ( I eSymPoly R ) ` l ) e. ( Base ` ( I mPoly R ) ) ) : No typesetting found for |- ( ( ph /\ l e. ( 1 ... ( # ` J ) ) ) -> ( ( I eSymPoly R ) ` l ) e. ( Base ` ( I mPoly R ) ) ) with typecode |-
526 524 525 eqeltrid φ l 1 J E l Base I mPoly R
527 260 adantr φ l 1 J Z B I
528 5 254 255 2 522 523 526 527 evlcl φ l 1 J Q E l Z B
529 2 9 514 521 528 ringcld φ l 1 J l × ˙ N 1 ˙ · ˙ Q E l Z B
530 117 adantr φ l 1 J M Mnd
531 fzssp1 0 J 0 J + 1
532 297 oveq2d φ 0 H = 0 J + 1
533 531 532 sseqtrrid φ 0 J 0 H
534 516 533 sstrid φ 1 J 0 H
535 534 sselda φ l 1 J l 0 H
536 fznn0sub2 l 0 H H l 0 H
537 535 536 syl φ l 1 J H l 0 H
538 414 537 sselid φ l 1 J H l 0
539 514 47 syl φ l 1 J X Base W
540 32 81 530 538 539 mulgnn0cld φ l 1 J H l M X Base W
541 1 31 2 80 514 529 540 ply1vscl φ l 1 J l × ˙ N 1 ˙ · ˙ Q E l Z W H l M X Base W
542 oveq1 l = k + 1 l × ˙ N 1 ˙ = k + 1 × ˙ N 1 ˙
543 2fveq3 l = k + 1 Q E l = Q E k + 1
544 543 fveq1d l = k + 1 Q E l Z = Q E k + 1 Z
545 542 544 oveq12d l = k + 1 l × ˙ N 1 ˙ · ˙ Q E l Z = k + 1 × ˙ N 1 ˙ · ˙ Q E k + 1 Z
546 oveq2 l = k + 1 H l = H k + 1
547 546 oveq1d l = k + 1 H l M X = H k + 1 M X
548 545 547 oveq12d l = k + 1 l × ˙ N 1 ˙ · ˙ Q E l Z W H l M X = k + 1 × ˙ N 1 ˙ · ˙ Q E k + 1 Z W H k + 1 M X
549 548 adantl φ k 0 ..^ J l = k + 1 l × ˙ N 1 ˙ · ˙ Q E l Z W H l M X = k + 1 × ˙ N 1 ˙ · ˙ Q E k + 1 Z W H k + 1 M X
550 31 98 100 541 549 gsummptp1 φ W k 0 ..^ J k + 1 × ˙ N 1 ˙ · ˙ Q E k + 1 Z W H k + 1 M X = W l = 1 J l × ˙ N 1 ˙ · ˙ Q E l Z W H l M X
551 550 oveq1d φ W k 0 ..^ J k + 1 × ˙ N 1 ˙ · ˙ Q E k + 1 Z W H k + 1 M X + W 0 × ˙ N 1 ˙ · ˙ 1 R W H M X + W H × ˙ N 1 ˙ · ˙ Q E H Z W 0 M X = W l = 1 J l × ˙ N 1 ˙ · ˙ Q E l Z W H l M X + W 0 × ˙ N 1 ˙ · ˙ 1 R W H M X + W H × ˙ N 1 ˙ · ˙ Q E H Z W 0 M X
552 oveq1 k = l k × ˙ N 1 ˙ = l × ˙ N 1 ˙
553 2fveq3 k = l Q E k = Q E l
554 553 fveq1d k = l Q E k Z = Q E l Z
555 552 554 oveq12d k = l k × ˙ N 1 ˙ · ˙ Q E k Z = l × ˙ N 1 ˙ · ˙ Q E l Z
556 oveq2 k = l H k = H l
557 556 oveq1d k = l H k M X = H l M X
558 555 557 oveq12d k = l k × ˙ N 1 ˙ · ˙ Q E k Z W H k M X = l × ˙ N 1 ˙ · ˙ Q E l Z W H l M X
559 558 cbvmptv k 0 H k × ˙ N 1 ˙ · ˙ Q E k Z W H k M X = l 0 H l × ˙ N 1 ˙ · ˙ Q E l Z W H l M X
560 559 a1i φ k 0 H k × ˙ N 1 ˙ · ˙ Q E k Z W H k M X = l 0 H l × ˙ N 1 ˙ · ˙ Q E l Z W H l M X
561 560 oveq2d φ W k = 0 H k × ˙ N 1 ˙ · ˙ Q E k Z W H k M X = W l = 0 H l × ˙ N 1 ˙ · ˙ Q E l Z W H l M X
562 nn0uz 0 = 0
563 250 562 eleqtrdi φ H 0
564 46 adantr φ l 0 H R Ring
565 564 151 syl φ l 0 H mulGrp R Mnd
566 414 a1i φ 0 H 0
567 566 sselda φ l 0 H l 0
568 158 adantr φ l 0 H N 1 ˙ B
569 150 12 565 567 568 mulgnn0cld φ l 0 H l × ˙ N 1 ˙ B
570 14 adantr φ l 0 H I Fin
571 35 adantr φ l 0 H R CRing
572 257 570 564 567 255 esplympl Could not format ( ( ph /\ l e. ( 0 ... H ) ) -> ( ( I eSymPoly R ) ` l ) e. ( Base ` ( I mPoly R ) ) ) : No typesetting found for |- ( ( ph /\ l e. ( 0 ... H ) ) -> ( ( I eSymPoly R ) ` l ) e. ( Base ` ( I mPoly R ) ) ) with typecode |-
573 524 572 eqeltrid φ l 0 H E l Base I mPoly R
574 260 adantr φ l 0 H Z B I
575 5 254 255 2 570 571 573 574 evlcl φ l 0 H Q E l Z B
576 2 9 564 569 575 ringcld φ l 0 H l × ˙ N 1 ˙ · ˙ Q E l Z B
577 117 adantr φ l 0 H M Mnd
578 fznn0sub l 0 H H l 0
579 578 adantl φ l 0 H H l 0
580 564 47 syl φ l 0 H X Base W
581 32 81 577 579 580 mulgnn0cld φ l 0 H H l M X Base W
582 1 31 2 80 564 576 581 ply1vscl φ l 0 H l × ˙ N 1 ˙ · ˙ Q E l Z W H l M X Base W
583 oveq1 l = H l × ˙ N 1 ˙ = H × ˙ N 1 ˙
584 2fveq3 l = H Q E l = Q E H
585 584 fveq1d l = H Q E l Z = Q E H Z
586 583 585 oveq12d l = H l × ˙ N 1 ˙ · ˙ Q E l Z = H × ˙ N 1 ˙ · ˙ Q E H Z
587 586 adantl φ l = H l × ˙ N 1 ˙ · ˙ Q E l Z = H × ˙ N 1 ˙ · ˙ Q E H Z
588 oveq2 l = H H l = H H
589 294 subidd φ H H = 0
590 588 589 sylan9eqr φ l = H H l = 0
591 590 oveq1d φ l = H H l M X = 0 M X
592 587 591 oveq12d φ l = H l × ˙ N 1 ˙ · ˙ Q E l Z W H l M X = H × ˙ N 1 ˙ · ˙ Q E H Z W 0 M X
593 31 193 98 563 582 592 gsummptfzsplitra φ W l = 0 H l × ˙ N 1 ˙ · ˙ Q E l Z W H l M X = W l 0 ..^ H l × ˙ N 1 ˙ · ˙ Q E l Z W H l M X + W H × ˙ N 1 ˙ · ˙ Q E H Z W 0 M X
594 100 nn0zd φ J
595 fzval3 J 0 J = 0 ..^ J + 1
596 594 595 syl φ 0 J = 0 ..^ J + 1
597 297 oveq2d φ 0 ..^ H = 0 ..^ J + 1
598 596 597 eqtr4d φ 0 J = 0 ..^ H
599 598 mpteq1d φ l 0 J l × ˙ N 1 ˙ · ˙ Q E l Z W H l M X = l 0 ..^ H l × ˙ N 1 ˙ · ˙ Q E l Z W H l M X
600 599 oveq2d φ W l = 0 J l × ˙ N 1 ˙ · ˙ Q E l Z W H l M X = W l 0 ..^ H l × ˙ N 1 ˙ · ˙ Q E l Z W H l M X
601 100 562 eleqtrdi φ J 0
602 150 12 152 112 159 mulgnn0cld φ l 0 J l × ˙ N 1 ˙ B
603 14 adantr φ l 0 J I Fin
604 257 603 119 112 255 esplympl Could not format ( ( ph /\ l e. ( 0 ... ( # ` J ) ) ) -> ( ( I eSymPoly R ) ` l ) e. ( Base ` ( I mPoly R ) ) ) : No typesetting found for |- ( ( ph /\ l e. ( 0 ... ( # ` J ) ) ) -> ( ( I eSymPoly R ) ` l ) e. ( Base ` ( I mPoly R ) ) ) with typecode |-
605 524 604 eqeltrid φ l 0 J E l Base I mPoly R
606 260 adantr φ l 0 J Z B I
607 5 254 255 2 603 165 605 606 evlcl φ l 0 J Q E l Z B
608 2 9 119 602 607 ringcld φ l 0 J l × ˙ N 1 ˙ · ˙ Q E l Z B
609 533 sselda φ l 0 J l 0 H
610 609 536 syl φ l 0 J H l 0 H
611 414 610 sselid φ l 0 J H l 0
612 32 81 118 611 120 mulgnn0cld φ l 0 J H l M X Base W
613 1 31 2 80 119 608 612 ply1vscl φ l 0 J l × ˙ N 1 ˙ · ˙ Q E l Z W H l M X Base W
614 oveq1 l = 0 l × ˙ N 1 ˙ = 0 × ˙ N 1 ˙
615 614 adantl φ l = 0 l × ˙ N 1 ˙ = 0 × ˙ N 1 ˙
616 2fveq3 l = 0 Q E l = Q E 0
617 616 fveq1d l = 0 Q E l Z = Q E 0 Z
618 617 adantl φ l = 0 Q E l Z = Q E 0 Z
619 eqid 1 I mPoly R = 1 I mPoly R
620 14 46 619 esplyfval0 Could not format ( ph -> ( ( I eSymPoly R ) ` 0 ) = ( 1r ` ( I mPoly R ) ) ) : No typesetting found for |- ( ph -> ( ( I eSymPoly R ) ` 0 ) = ( 1r ` ( I mPoly R ) ) ) with typecode |-
621 6 fveq1i Could not format ( E ` 0 ) = ( ( I eSymPoly R ) ` 0 ) : No typesetting found for |- ( E ` 0 ) = ( ( I eSymPoly R ) ` 0 ) with typecode |-
622 621 a1i Could not format ( ph -> ( E ` 0 ) = ( ( I eSymPoly R ) ` 0 ) ) : No typesetting found for |- ( ph -> ( E ` 0 ) = ( ( I eSymPoly R ) ` 0 ) ) with typecode |-
623 eqid algSc I mPoly R = algSc I mPoly R
624 254 623 278 619 14 46 mplascl1 φ algSc I mPoly R 1 R = 1 I mPoly R
625 620 622 624 3eqtr4d φ E 0 = algSc I mPoly R 1 R
626 625 fveq2d φ Q E 0 = Q algSc I mPoly R 1 R
627 626 fveq1d φ Q E 0 Z = Q algSc I mPoly R 1 R Z
628 627 adantr φ l = 0 Q E 0 Z = Q algSc I mPoly R 1 R Z
629 5 254 2 623 14 35 246 16 evlscaval φ Q algSc I mPoly R 1 R Z = 1 R
630 629 adantr φ l = 0 Q algSc I mPoly R 1 R Z = 1 R
631 618 628 630 3eqtrd φ l = 0 Q E l Z = 1 R
632 615 631 oveq12d φ l = 0 l × ˙ N 1 ˙ · ˙ Q E l Z = 0 × ˙ N 1 ˙ · ˙ 1 R
633 oveq2 l = 0 H l = H 0
634 633 adantl φ l = 0 H l = H 0
635 294 adantr φ l = 0 H
636 635 subid1d φ l = 0 H 0 = H
637 634 636 eqtrd φ l = 0 H l = H
638 637 oveq1d φ l = 0 H l M X = H M X
639 632 638 oveq12d φ l = 0 l × ˙ N 1 ˙ · ˙ Q E l Z W H l M X = 0 × ˙ N 1 ˙ · ˙ 1 R W H M X
640 31 193 98 601 613 639 gsummptfzsplitla φ W l = 0 J l × ˙ N 1 ˙ · ˙ Q E l Z W H l M X = 0 × ˙ N 1 ˙ · ˙ 1 R W H M X + W W l = 0 + 1 J l × ˙ N 1 ˙ · ˙ Q E l Z W H l M X
641 0p1e1 0 + 1 = 1
642 641 oveq1i 0 + 1 J = 1 J
643 642 mpteq1i l 0 + 1 J l × ˙ N 1 ˙ · ˙ Q E l Z W H l M X = l 1 J l × ˙ N 1 ˙ · ˙ Q E l Z W H l M X
644 643 oveq2i W l = 0 + 1 J l × ˙ N 1 ˙ · ˙ Q E l Z W H l M X = W l = 1 J l × ˙ N 1 ˙ · ˙ Q E l Z W H l M X
645 644 oveq2i 0 × ˙ N 1 ˙ · ˙ 1 R W H M X + W W l = 0 + 1 J l × ˙ N 1 ˙ · ˙ Q E l Z W H l M X = 0 × ˙ N 1 ˙ · ˙ 1 R W H M X + W W l = 1 J l × ˙ N 1 ˙ · ˙ Q E l Z W H l M X
646 645 a1i φ 0 × ˙ N 1 ˙ · ˙ 1 R W H M X + W W l = 0 + 1 J l × ˙ N 1 ˙ · ˙ Q E l Z W H l M X = 0 × ˙ N 1 ˙ · ˙ 1 R W H M X + W W l = 1 J l × ˙ N 1 ˙ · ˙ Q E l Z W H l M X
647 43 ringabld φ W Abel
648 fzfid φ 1 J Fin
649 541 ralrimiva φ l 1 J l × ˙ N 1 ˙ · ˙ Q E l Z W H l M X Base W
650 31 98 648 649 gsummptcl φ W l = 1 J l × ˙ N 1 ˙ · ˙ Q E l Z W H l M X Base W
651 31 193 647 252 650 ablcomd φ 0 × ˙ N 1 ˙ · ˙ 1 R W H M X + W W l = 1 J l × ˙ N 1 ˙ · ˙ Q E l Z W H l M X = W l = 1 J l × ˙ N 1 ˙ · ˙ Q E l Z W H l M X + W 0 × ˙ N 1 ˙ · ˙ 1 R W H M X
652 640 646 651 3eqtrd φ W l = 0 J l × ˙ N 1 ˙ · ˙ Q E l Z W H l M X = W l = 1 J l × ˙ N 1 ˙ · ˙ Q E l Z W H l M X + W 0 × ˙ N 1 ˙ · ˙ 1 R W H M X
653 600 652 eqtr3d φ W l 0 ..^ H l × ˙ N 1 ˙ · ˙ Q E l Z W H l M X = W l = 1 J l × ˙ N 1 ˙ · ˙ Q E l Z W H l M X + W 0 × ˙ N 1 ˙ · ˙ 1 R W H M X
654 653 oveq1d φ W l 0 ..^ H l × ˙ N 1 ˙ · ˙ Q E l Z W H l M X + W H × ˙ N 1 ˙ · ˙ Q E H Z W 0 M X = W l = 1 J l × ˙ N 1 ˙ · ˙ Q E l Z W H l M X + W 0 × ˙ N 1 ˙ · ˙ 1 R W H M X + W H × ˙ N 1 ˙ · ˙ Q E H Z W 0 M X
655 593 654 eqtr2d φ W l = 1 J l × ˙ N 1 ˙ · ˙ Q E l Z W H l M X + W 0 × ˙ N 1 ˙ · ˙ 1 R W H M X + W H × ˙ N 1 ˙ · ˙ Q E H Z W 0 M X = W l = 0 H l × ˙ N 1 ˙ · ˙ Q E l Z W H l M X
656 31 193 44 650 252 264 grpassd φ W l = 1 J l × ˙ N 1 ˙ · ˙ Q E l Z W H l M X + W 0 × ˙ N 1 ˙ · ˙ 1 R W H M X + W H × ˙ N 1 ˙ · ˙ Q E H Z W 0 M X = W l = 1 J l × ˙ N 1 ˙ · ˙ Q E l Z W H l M X + W 0 × ˙ N 1 ˙ · ˙ 1 R W H M X + W H × ˙ N 1 ˙ · ˙ Q E H Z W 0 M X
657 561 655 656 3eqtr2rd φ W l = 1 J l × ˙ N 1 ˙ · ˙ Q E l Z W H l M X + W 0 × ˙ N 1 ˙ · ˙ 1 R W H M X + W H × ˙ N 1 ˙ · ˙ Q E H Z W 0 M X = W k = 0 H k × ˙ N 1 ˙ · ˙ Q E k Z W H k M X
658 46 adantr φ k 0 H R Ring
659 658 151 syl φ k 0 H mulGrp R Mnd
660 566 sselda φ k 0 H k 0
661 158 adantr φ k 0 H N 1 ˙ B
662 150 12 659 660 661 mulgnn0cld φ k 0 H k × ˙ N 1 ˙ B
663 14 adantr φ k 0 H I Fin
664 35 adantr φ k 0 H R CRing
665 6 fveq1i Could not format ( E ` k ) = ( ( I eSymPoly R ) ` k ) : No typesetting found for |- ( E ` k ) = ( ( I eSymPoly R ) ` k ) with typecode |-
666 257 663 658 660 255 esplympl Could not format ( ( ph /\ k e. ( 0 ... H ) ) -> ( ( I eSymPoly R ) ` k ) e. ( Base ` ( I mPoly R ) ) ) : No typesetting found for |- ( ( ph /\ k e. ( 0 ... H ) ) -> ( ( I eSymPoly R ) ` k ) e. ( Base ` ( I mPoly R ) ) ) with typecode |-
667 665 666 eqeltrid φ k 0 H E k Base I mPoly R
668 260 adantr φ k 0 H Z B I
669 5 254 255 2 663 664 667 668 evlcl φ k 0 H Q E k Z B
670 2 9 658 662 669 ringcld φ k 0 H k × ˙ N 1 ˙ · ˙ Q E k Z B
671 117 adantr φ k 0 H M Mnd
672 fznn0sub2 k 0 H H k 0 H
673 672 adantl φ k 0 H H k 0 H
674 414 673 sselid φ k 0 H H k 0
675 48 adantr φ k 0 H X Base W
676 32 81 671 674 675 mulgnn0cld φ k 0 H H k M X Base W
677 1 31 2 80 658 670 676 ply1vscl φ k 0 H k × ˙ N 1 ˙ · ˙ Q E k Z W H k M X Base W
678 oveq1 k = H l k × ˙ N 1 ˙ = H l × ˙ N 1 ˙
679 2fveq3 k = H l Q E k = Q E H l
680 679 fveq1d k = H l Q E k Z = Q E H l Z
681 678 680 oveq12d k = H l k × ˙ N 1 ˙ · ˙ Q E k Z = H l × ˙ N 1 ˙ · ˙ Q E H l Z
682 681 adantl φ l 0 H k = H l k × ˙ N 1 ˙ · ˙ Q E k Z = H l × ˙ N 1 ˙ · ˙ Q E H l Z
683 simpr φ l 0 H k = H l k = H l
684 683 oveq2d φ l 0 H k = H l H k = H H l
685 294 ad2antrr φ l 0 H k = H l H
686 567 adantr φ l 0 H k = H l l 0
687 686 nn0cnd φ l 0 H k = H l l
688 685 687 nncand φ l 0 H k = H l H H l = l
689 684 688 eqtrd φ l 0 H k = H l H k = l
690 689 oveq1d φ l 0 H k = H l H k M X = l M X
691 682 690 oveq12d φ l 0 H k = H l k × ˙ N 1 ˙ · ˙ Q E k Z W H k M X = H l × ˙ N 1 ˙ · ˙ Q E H l Z W l M X
692 31 98 250 677 691 gsummptrev φ W k = 0 H k × ˙ N 1 ˙ · ˙ Q E k Z W H k M X = W l = 0 H H l × ˙ N 1 ˙ · ˙ Q E H l Z W l M X
693 551 657 692 3eqtrd φ W k 0 ..^ J k + 1 × ˙ N 1 ˙ · ˙ Q E k + 1 Z W H k + 1 M X + W 0 × ˙ N 1 ˙ · ˙ 1 R W H M X + W H × ˙ N 1 ˙ · ˙ Q E H Z W 0 M X = W l = 0 H H l × ˙ N 1 ˙ · ˙ Q E H l Z W l M X
694 479 513 693 3eqtr3d Could not format ( ph -> ( ( W gsum ( l e. ( 0 ... ( # ` J ) ) |-> ( ( ( ( ( # ` J ) - l ) .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( ( # ` J ) - l ) ) ) ` ( Z |` J ) ) ) ( .s ` W ) ( l ( .g ` M ) X ) ) ) ) ( .r ` W ) ( X .- ( A ` ( Z ` Y ) ) ) ) = ( W gsum ( l e. ( 0 ... H ) |-> ( ( ( ( H - l ) .^ ( N ` .1. ) ) .x. ( ( Q ` ( E ` ( H - l ) ) ) ` Z ) ) ( .s ` W ) ( l ( .g ` M ) X ) ) ) ) ) : No typesetting found for |- ( ph -> ( ( W gsum ( l e. ( 0 ... ( # ` J ) ) |-> ( ( ( ( ( # ` J ) - l ) .^ ( N ` .1. ) ) .x. ( ( ( J eval R ) ` ( ( J eSymPoly R ) ` ( ( # ` J ) - l ) ) ) ` ( Z |` J ) ) ) ( .s ` W ) ( l ( .g ` M ) X ) ) ) ) ( .r ` W ) ( X .- ( A ` ( Z ` Y ) ) ) ) = ( W gsum ( l e. ( 0 ... H ) |-> ( ( ( ( H - l ) .^ ( N ` .1. ) ) .x. ( ( Q ` ( E ` ( H - l ) ) ) ` Z ) ) ( .s ` W ) ( l ( .g ` M ) X ) ) ) ) ) with typecode |-
695 79 192 694 3eqtrd φ F = W l = 0 H H l × ˙ N 1 ˙ · ˙ Q E H l Z W l M X
696 695 fveq2d φ coe 1 F = coe 1 W l = 0 H H l × ˙ N 1 ˙ · ˙ Q E H l Z W l M X
697 696 fveq1d φ coe 1 F K = coe 1 W l = 0 H H l × ˙ N 1 ˙ · ˙ Q E H l Z W l M X K
698 4 fveq2i M = mulGrp W
699 150 12 565 579 568 mulgnn0cld φ l 0 H H l × ˙ N 1 ˙ B
700 6 fveq1i Could not format ( E ` ( H - l ) ) = ( ( I eSymPoly R ) ` ( H - l ) ) : No typesetting found for |- ( E ` ( H - l ) ) = ( ( I eSymPoly R ) ` ( H - l ) ) with typecode |-
701 257 570 564 579 255 esplympl Could not format ( ( ph /\ l e. ( 0 ... H ) ) -> ( ( I eSymPoly R ) ` ( H - l ) ) e. ( Base ` ( I mPoly R ) ) ) : No typesetting found for |- ( ( ph /\ l e. ( 0 ... H ) ) -> ( ( I eSymPoly R ) ` ( H - l ) ) e. ( Base ` ( I mPoly R ) ) ) with typecode |-
702 700 701 eqeltrid φ l 0 H E H l Base I mPoly R
703 5 254 255 2 570 571 702 574 evlcl φ l 0 H Q E H l Z B
704 2 9 564 699 703 ringcld φ l 0 H H l × ˙ N 1 ˙ · ˙ Q E H l Z B
705 704 ralrimiva φ l 0 H H l × ˙ N 1 ˙ · ˙ Q E H l Z B
706 oveq2 l = K H l = H K
707 706 oveq1d l = K H l × ˙ N 1 ˙ = H K × ˙ N 1 ˙
708 706 fveq2d l = K E H l = E H K
709 708 fveq2d l = K Q E H l = Q E H K
710 709 fveq1d l = K Q E H l Z = Q E H K Z
711 707 710 oveq12d l = K H l × ˙ N 1 ˙ · ˙ Q E H l Z = H K × ˙ N 1 ˙ · ˙ Q E H K Z
712 1 31 10 698 46 2 80 250 705 18 711 gsummoncoe1fz φ coe 1 W l = 0 H H l × ˙ N 1 ˙ · ˙ Q E H l Z W l M X K = H K × ˙ N 1 ˙ · ˙ Q E H K Z
713 697 712 eqtrd φ coe 1 F K = H K × ˙ N 1 ˙ · ˙ Q E H K Z