Metamath Proof Explorer


Theorem ply1coedeg

Description: Decompose a univariate polynomial K as a sum of powers, up to its degree D . (Contributed by Thierry Arnoux, 15-Feb-2026)

Ref Expression
Hypotheses ply1coedeg.p P = Poly 1 R
ply1coedeg.x X = var 1 R
ply1coedeg.b B = Base P
ply1coedeg.n · ˙ = P
ply1coedeg.m M = mulGrp P
ply1coedeg.e × ˙ = M
ply1coedeg.a A = coe 1 K
ply1coedeg.d D = deg 1 R K
ply1coedeg.r φ R Ring
ply1coedeg.k φ K B
Assertion ply1coedeg φ K = P k = 0 D A k · ˙ k × ˙ X

Proof

Step Hyp Ref Expression
1 ply1coedeg.p P = Poly 1 R
2 ply1coedeg.x X = var 1 R
3 ply1coedeg.b B = Base P
4 ply1coedeg.n · ˙ = P
5 ply1coedeg.m M = mulGrp P
6 ply1coedeg.e × ˙ = M
7 ply1coedeg.a A = coe 1 K
8 ply1coedeg.d D = deg 1 R K
9 ply1coedeg.r φ R Ring
10 ply1coedeg.k φ K B
11 simpr φ K = 0 P K = 0 P
12 8 a1i φ K = 0 P D = deg 1 R K
13 11 fveq2d φ K = 0 P deg 1 R K = deg 1 R 0 P
14 eqid deg 1 R = deg 1 R
15 eqid 0 P = 0 P
16 14 1 15 deg1z R Ring deg 1 R 0 P = −∞
17 9 16 syl φ deg 1 R 0 P = −∞
18 17 adantr φ K = 0 P deg 1 R 0 P = −∞
19 12 13 18 3eqtrd φ K = 0 P D = −∞
20 19 oveq2d φ K = 0 P 0 D = 0 −∞
21 mnfnre −∞
22 21 neli ¬ −∞
23 zre −∞ −∞
24 22 23 mto ¬ −∞
25 24 nelir −∞
26 25 olci 0 −∞
27 fz0 0 −∞ 0 −∞ =
28 26 27 ax-mp 0 −∞ =
29 20 28 eqtrdi φ K = 0 P 0 D =
30 29 mpteq1d φ K = 0 P k 0 D A k · ˙ k × ˙ X = k A k · ˙ k × ˙ X
31 mpt0 k A k · ˙ k × ˙ X =
32 30 31 eqtrdi φ K = 0 P k 0 D A k · ˙ k × ˙ X =
33 32 oveq2d φ K = 0 P P k = 0 D A k · ˙ k × ˙ X = P
34 15 gsum0 P = 0 P
35 33 34 eqtrdi φ K = 0 P P k = 0 D A k · ˙ k × ˙ X = 0 P
36 11 35 eqtr4d φ K = 0 P K = P k = 0 D A k · ˙ k × ˙ X
37 1 2 3 4 5 6 7 ply1coe R Ring K B K = P k 0 A k · ˙ k × ˙ X
38 9 10 37 syl2anc φ K = P k 0 A k · ˙ k × ˙ X
39 38 adantr φ K 0 P K = P k 0 A k · ˙ k × ˙ X
40 1 ply1ring R Ring P Ring
41 9 40 syl φ P Ring
42 41 ringcmnd φ P CMnd
43 42 adantr φ K 0 P P CMnd
44 nn0ex 0 V
45 44 a1i φ K 0 P 0 V
46 10 ad2antrr φ K 0 P k 0 0 D K B
47 difssd φ 0 0 D 0
48 47 sselda φ k 0 0 D k 0
49 48 adantlr φ K 0 P k 0 0 D k 0
50 9 adantr φ K 0 P R Ring
51 10 adantr φ K 0 P K B
52 simpr φ K 0 P K 0 P
53 14 1 15 3 deg1nn0cl R Ring K B K 0 P deg 1 R K 0
54 50 51 52 53 syl3anc φ K 0 P deg 1 R K 0
55 8 54 eqeltrid φ K 0 P D 0
56 55 nn0zd φ K 0 P D
57 nn0diffz0 D 0 0 0 D = D + 1
58 55 57 syl φ K 0 P 0 0 D = D + 1
59 58 eleq2d φ K 0 P k 0 0 D k D + 1
60 59 biimpa φ K 0 P k 0 0 D k D + 1
61 eluzp1l D k D + 1 D < k
62 56 60 61 syl2an2r φ K 0 P k 0 0 D D < k
63 8 62 eqbrtrrid φ K 0 P k 0 0 D deg 1 R K < k
64 eqid 0 R = 0 R
65 14 1 3 64 7 deg1lt K B k 0 deg 1 R K < k A k = 0 R
66 46 49 63 65 syl3anc φ K 0 P k 0 0 D A k = 0 R
67 1 ply1sca R Ring R = Scalar P
68 9 67 syl φ R = Scalar P
69 68 fveq2d φ 0 R = 0 Scalar P
70 69 ad2antrr φ K 0 P k 0 0 D 0 R = 0 Scalar P
71 66 70 eqtrd φ K 0 P k 0 0 D A k = 0 Scalar P
72 71 oveq1d φ K 0 P k 0 0 D A k · ˙ k × ˙ X = 0 Scalar P · ˙ k × ˙ X
73 1 ply1lmod R Ring P LMod
74 9 73 syl φ P LMod
75 5 3 mgpbas B = Base M
76 5 ringmgp P Ring M Mnd
77 41 76 syl φ M Mnd
78 77 adantr φ k 0 M Mnd
79 simpr φ k 0 k 0
80 2 1 3 vr1cl R Ring X B
81 9 80 syl φ X B
82 81 adantr φ k 0 X B
83 75 6 78 79 82 mulgnn0cld φ k 0 k × ˙ X B
84 48 83 syldan φ k 0 0 D k × ˙ X B
85 eqid Scalar P = Scalar P
86 eqid 0 Scalar P = 0 Scalar P
87 3 85 4 86 15 lmod0vs P LMod k × ˙ X B 0 Scalar P · ˙ k × ˙ X = 0 P
88 74 84 87 syl2an2r φ k 0 0 D 0 Scalar P · ˙ k × ˙ X = 0 P
89 88 adantlr φ K 0 P k 0 0 D 0 Scalar P · ˙ k × ˙ X = 0 P
90 72 89 eqtrd φ K 0 P k 0 0 D A k · ˙ k × ˙ X = 0 P
91 fzfid φ K 0 P 0 D Fin
92 eqid Base Scalar P = Base Scalar P
93 74 adantr φ k 0 P LMod
94 eqid Base R = Base R
95 7 3 1 94 coe1fvalcl K B k 0 A k Base R
96 10 95 sylan φ k 0 A k Base R
97 68 fveq2d φ Base R = Base Scalar P
98 97 adantr φ k 0 Base R = Base Scalar P
99 96 98 eleqtrd φ k 0 A k Base Scalar P
100 3 85 4 92 93 99 83 lmodvscld φ k 0 A k · ˙ k × ˙ X B
101 100 adantlr φ K 0 P k 0 A k · ˙ k × ˙ X B
102 fz0ssnn0 0 D 0
103 102 a1i φ K 0 P 0 D 0
104 3 15 43 45 90 91 101 103 gsummptres2 φ K 0 P P k 0 A k · ˙ k × ˙ X = P k = 0 D A k · ˙ k × ˙ X
105 39 104 eqtrd φ K 0 P K = P k = 0 D A k · ˙ k × ˙ X
106 36 105 pm2.61dane φ K = P k = 0 D A k · ˙ k × ˙ X