| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ply1coedeg.p |
|- P = ( Poly1 ` R ) |
| 2 |
|
ply1coedeg.x |
|- X = ( var1 ` R ) |
| 3 |
|
ply1coedeg.b |
|- B = ( Base ` P ) |
| 4 |
|
ply1coedeg.n |
|- .x. = ( .s ` P ) |
| 5 |
|
ply1coedeg.m |
|- M = ( mulGrp ` P ) |
| 6 |
|
ply1coedeg.e |
|- .^ = ( .g ` M ) |
| 7 |
|
ply1coedeg.a |
|- A = ( coe1 ` K ) |
| 8 |
|
ply1coedeg.d |
|- D = ( ( deg1 ` R ) ` K ) |
| 9 |
|
ply1coedeg.r |
|- ( ph -> R e. Ring ) |
| 10 |
|
ply1coedeg.k |
|- ( ph -> K e. B ) |
| 11 |
|
simpr |
|- ( ( ph /\ K = ( 0g ` P ) ) -> K = ( 0g ` P ) ) |
| 12 |
8
|
a1i |
|- ( ( ph /\ K = ( 0g ` P ) ) -> D = ( ( deg1 ` R ) ` K ) ) |
| 13 |
11
|
fveq2d |
|- ( ( ph /\ K = ( 0g ` P ) ) -> ( ( deg1 ` R ) ` K ) = ( ( deg1 ` R ) ` ( 0g ` P ) ) ) |
| 14 |
|
eqid |
|- ( deg1 ` R ) = ( deg1 ` R ) |
| 15 |
|
eqid |
|- ( 0g ` P ) = ( 0g ` P ) |
| 16 |
14 1 15
|
deg1z |
|- ( R e. Ring -> ( ( deg1 ` R ) ` ( 0g ` P ) ) = -oo ) |
| 17 |
9 16
|
syl |
|- ( ph -> ( ( deg1 ` R ) ` ( 0g ` P ) ) = -oo ) |
| 18 |
17
|
adantr |
|- ( ( ph /\ K = ( 0g ` P ) ) -> ( ( deg1 ` R ) ` ( 0g ` P ) ) = -oo ) |
| 19 |
12 13 18
|
3eqtrd |
|- ( ( ph /\ K = ( 0g ` P ) ) -> D = -oo ) |
| 20 |
19
|
oveq2d |
|- ( ( ph /\ K = ( 0g ` P ) ) -> ( 0 ... D ) = ( 0 ... -oo ) ) |
| 21 |
|
mnfnre |
|- -oo e/ RR |
| 22 |
21
|
neli |
|- -. -oo e. RR |
| 23 |
|
zre |
|- ( -oo e. ZZ -> -oo e. RR ) |
| 24 |
22 23
|
mto |
|- -. -oo e. ZZ |
| 25 |
24
|
nelir |
|- -oo e/ ZZ |
| 26 |
25
|
olci |
|- ( 0 e/ ZZ \/ -oo e/ ZZ ) |
| 27 |
|
fz0 |
|- ( ( 0 e/ ZZ \/ -oo e/ ZZ ) -> ( 0 ... -oo ) = (/) ) |
| 28 |
26 27
|
ax-mp |
|- ( 0 ... -oo ) = (/) |
| 29 |
20 28
|
eqtrdi |
|- ( ( ph /\ K = ( 0g ` P ) ) -> ( 0 ... D ) = (/) ) |
| 30 |
29
|
mpteq1d |
|- ( ( ph /\ K = ( 0g ` P ) ) -> ( k e. ( 0 ... D ) |-> ( ( A ` k ) .x. ( k .^ X ) ) ) = ( k e. (/) |-> ( ( A ` k ) .x. ( k .^ X ) ) ) ) |
| 31 |
|
mpt0 |
|- ( k e. (/) |-> ( ( A ` k ) .x. ( k .^ X ) ) ) = (/) |
| 32 |
30 31
|
eqtrdi |
|- ( ( ph /\ K = ( 0g ` P ) ) -> ( k e. ( 0 ... D ) |-> ( ( A ` k ) .x. ( k .^ X ) ) ) = (/) ) |
| 33 |
32
|
oveq2d |
|- ( ( ph /\ K = ( 0g ` P ) ) -> ( P gsum ( k e. ( 0 ... D ) |-> ( ( A ` k ) .x. ( k .^ X ) ) ) ) = ( P gsum (/) ) ) |
| 34 |
15
|
gsum0 |
|- ( P gsum (/) ) = ( 0g ` P ) |
| 35 |
33 34
|
eqtrdi |
|- ( ( ph /\ K = ( 0g ` P ) ) -> ( P gsum ( k e. ( 0 ... D ) |-> ( ( A ` k ) .x. ( k .^ X ) ) ) ) = ( 0g ` P ) ) |
| 36 |
11 35
|
eqtr4d |
|- ( ( ph /\ K = ( 0g ` P ) ) -> K = ( P gsum ( k e. ( 0 ... D ) |-> ( ( A ` k ) .x. ( k .^ X ) ) ) ) ) |
| 37 |
1 2 3 4 5 6 7
|
ply1coe |
|- ( ( R e. Ring /\ K e. B ) -> K = ( P gsum ( k e. NN0 |-> ( ( A ` k ) .x. ( k .^ X ) ) ) ) ) |
| 38 |
9 10 37
|
syl2anc |
|- ( ph -> K = ( P gsum ( k e. NN0 |-> ( ( A ` k ) .x. ( k .^ X ) ) ) ) ) |
| 39 |
38
|
adantr |
|- ( ( ph /\ K =/= ( 0g ` P ) ) -> K = ( P gsum ( k e. NN0 |-> ( ( A ` k ) .x. ( k .^ X ) ) ) ) ) |
| 40 |
1
|
ply1ring |
|- ( R e. Ring -> P e. Ring ) |
| 41 |
9 40
|
syl |
|- ( ph -> P e. Ring ) |
| 42 |
41
|
ringcmnd |
|- ( ph -> P e. CMnd ) |
| 43 |
42
|
adantr |
|- ( ( ph /\ K =/= ( 0g ` P ) ) -> P e. CMnd ) |
| 44 |
|
nn0ex |
|- NN0 e. _V |
| 45 |
44
|
a1i |
|- ( ( ph /\ K =/= ( 0g ` P ) ) -> NN0 e. _V ) |
| 46 |
10
|
ad2antrr |
|- ( ( ( ph /\ K =/= ( 0g ` P ) ) /\ k e. ( NN0 \ ( 0 ... D ) ) ) -> K e. B ) |
| 47 |
|
difssd |
|- ( ph -> ( NN0 \ ( 0 ... D ) ) C_ NN0 ) |
| 48 |
47
|
sselda |
|- ( ( ph /\ k e. ( NN0 \ ( 0 ... D ) ) ) -> k e. NN0 ) |
| 49 |
48
|
adantlr |
|- ( ( ( ph /\ K =/= ( 0g ` P ) ) /\ k e. ( NN0 \ ( 0 ... D ) ) ) -> k e. NN0 ) |
| 50 |
9
|
adantr |
|- ( ( ph /\ K =/= ( 0g ` P ) ) -> R e. Ring ) |
| 51 |
10
|
adantr |
|- ( ( ph /\ K =/= ( 0g ` P ) ) -> K e. B ) |
| 52 |
|
simpr |
|- ( ( ph /\ K =/= ( 0g ` P ) ) -> K =/= ( 0g ` P ) ) |
| 53 |
14 1 15 3
|
deg1nn0cl |
|- ( ( R e. Ring /\ K e. B /\ K =/= ( 0g ` P ) ) -> ( ( deg1 ` R ) ` K ) e. NN0 ) |
| 54 |
50 51 52 53
|
syl3anc |
|- ( ( ph /\ K =/= ( 0g ` P ) ) -> ( ( deg1 ` R ) ` K ) e. NN0 ) |
| 55 |
8 54
|
eqeltrid |
|- ( ( ph /\ K =/= ( 0g ` P ) ) -> D e. NN0 ) |
| 56 |
55
|
nn0zd |
|- ( ( ph /\ K =/= ( 0g ` P ) ) -> D e. ZZ ) |
| 57 |
|
nn0diffz0 |
|- ( D e. NN0 -> ( NN0 \ ( 0 ... D ) ) = ( ZZ>= ` ( D + 1 ) ) ) |
| 58 |
55 57
|
syl |
|- ( ( ph /\ K =/= ( 0g ` P ) ) -> ( NN0 \ ( 0 ... D ) ) = ( ZZ>= ` ( D + 1 ) ) ) |
| 59 |
58
|
eleq2d |
|- ( ( ph /\ K =/= ( 0g ` P ) ) -> ( k e. ( NN0 \ ( 0 ... D ) ) <-> k e. ( ZZ>= ` ( D + 1 ) ) ) ) |
| 60 |
59
|
biimpa |
|- ( ( ( ph /\ K =/= ( 0g ` P ) ) /\ k e. ( NN0 \ ( 0 ... D ) ) ) -> k e. ( ZZ>= ` ( D + 1 ) ) ) |
| 61 |
|
eluzp1l |
|- ( ( D e. ZZ /\ k e. ( ZZ>= ` ( D + 1 ) ) ) -> D < k ) |
| 62 |
56 60 61
|
syl2an2r |
|- ( ( ( ph /\ K =/= ( 0g ` P ) ) /\ k e. ( NN0 \ ( 0 ... D ) ) ) -> D < k ) |
| 63 |
8 62
|
eqbrtrrid |
|- ( ( ( ph /\ K =/= ( 0g ` P ) ) /\ k e. ( NN0 \ ( 0 ... D ) ) ) -> ( ( deg1 ` R ) ` K ) < k ) |
| 64 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
| 65 |
14 1 3 64 7
|
deg1lt |
|- ( ( K e. B /\ k e. NN0 /\ ( ( deg1 ` R ) ` K ) < k ) -> ( A ` k ) = ( 0g ` R ) ) |
| 66 |
46 49 63 65
|
syl3anc |
|- ( ( ( ph /\ K =/= ( 0g ` P ) ) /\ k e. ( NN0 \ ( 0 ... D ) ) ) -> ( A ` k ) = ( 0g ` R ) ) |
| 67 |
1
|
ply1sca |
|- ( R e. Ring -> R = ( Scalar ` P ) ) |
| 68 |
9 67
|
syl |
|- ( ph -> R = ( Scalar ` P ) ) |
| 69 |
68
|
fveq2d |
|- ( ph -> ( 0g ` R ) = ( 0g ` ( Scalar ` P ) ) ) |
| 70 |
69
|
ad2antrr |
|- ( ( ( ph /\ K =/= ( 0g ` P ) ) /\ k e. ( NN0 \ ( 0 ... D ) ) ) -> ( 0g ` R ) = ( 0g ` ( Scalar ` P ) ) ) |
| 71 |
66 70
|
eqtrd |
|- ( ( ( ph /\ K =/= ( 0g ` P ) ) /\ k e. ( NN0 \ ( 0 ... D ) ) ) -> ( A ` k ) = ( 0g ` ( Scalar ` P ) ) ) |
| 72 |
71
|
oveq1d |
|- ( ( ( ph /\ K =/= ( 0g ` P ) ) /\ k e. ( NN0 \ ( 0 ... D ) ) ) -> ( ( A ` k ) .x. ( k .^ X ) ) = ( ( 0g ` ( Scalar ` P ) ) .x. ( k .^ X ) ) ) |
| 73 |
1
|
ply1lmod |
|- ( R e. Ring -> P e. LMod ) |
| 74 |
9 73
|
syl |
|- ( ph -> P e. LMod ) |
| 75 |
5 3
|
mgpbas |
|- B = ( Base ` M ) |
| 76 |
5
|
ringmgp |
|- ( P e. Ring -> M e. Mnd ) |
| 77 |
41 76
|
syl |
|- ( ph -> M e. Mnd ) |
| 78 |
77
|
adantr |
|- ( ( ph /\ k e. NN0 ) -> M e. Mnd ) |
| 79 |
|
simpr |
|- ( ( ph /\ k e. NN0 ) -> k e. NN0 ) |
| 80 |
2 1 3
|
vr1cl |
|- ( R e. Ring -> X e. B ) |
| 81 |
9 80
|
syl |
|- ( ph -> X e. B ) |
| 82 |
81
|
adantr |
|- ( ( ph /\ k e. NN0 ) -> X e. B ) |
| 83 |
75 6 78 79 82
|
mulgnn0cld |
|- ( ( ph /\ k e. NN0 ) -> ( k .^ X ) e. B ) |
| 84 |
48 83
|
syldan |
|- ( ( ph /\ k e. ( NN0 \ ( 0 ... D ) ) ) -> ( k .^ X ) e. B ) |
| 85 |
|
eqid |
|- ( Scalar ` P ) = ( Scalar ` P ) |
| 86 |
|
eqid |
|- ( 0g ` ( Scalar ` P ) ) = ( 0g ` ( Scalar ` P ) ) |
| 87 |
3 85 4 86 15
|
lmod0vs |
|- ( ( P e. LMod /\ ( k .^ X ) e. B ) -> ( ( 0g ` ( Scalar ` P ) ) .x. ( k .^ X ) ) = ( 0g ` P ) ) |
| 88 |
74 84 87
|
syl2an2r |
|- ( ( ph /\ k e. ( NN0 \ ( 0 ... D ) ) ) -> ( ( 0g ` ( Scalar ` P ) ) .x. ( k .^ X ) ) = ( 0g ` P ) ) |
| 89 |
88
|
adantlr |
|- ( ( ( ph /\ K =/= ( 0g ` P ) ) /\ k e. ( NN0 \ ( 0 ... D ) ) ) -> ( ( 0g ` ( Scalar ` P ) ) .x. ( k .^ X ) ) = ( 0g ` P ) ) |
| 90 |
72 89
|
eqtrd |
|- ( ( ( ph /\ K =/= ( 0g ` P ) ) /\ k e. ( NN0 \ ( 0 ... D ) ) ) -> ( ( A ` k ) .x. ( k .^ X ) ) = ( 0g ` P ) ) |
| 91 |
|
fzfid |
|- ( ( ph /\ K =/= ( 0g ` P ) ) -> ( 0 ... D ) e. Fin ) |
| 92 |
|
eqid |
|- ( Base ` ( Scalar ` P ) ) = ( Base ` ( Scalar ` P ) ) |
| 93 |
74
|
adantr |
|- ( ( ph /\ k e. NN0 ) -> P e. LMod ) |
| 94 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 95 |
7 3 1 94
|
coe1fvalcl |
|- ( ( K e. B /\ k e. NN0 ) -> ( A ` k ) e. ( Base ` R ) ) |
| 96 |
10 95
|
sylan |
|- ( ( ph /\ k e. NN0 ) -> ( A ` k ) e. ( Base ` R ) ) |
| 97 |
68
|
fveq2d |
|- ( ph -> ( Base ` R ) = ( Base ` ( Scalar ` P ) ) ) |
| 98 |
97
|
adantr |
|- ( ( ph /\ k e. NN0 ) -> ( Base ` R ) = ( Base ` ( Scalar ` P ) ) ) |
| 99 |
96 98
|
eleqtrd |
|- ( ( ph /\ k e. NN0 ) -> ( A ` k ) e. ( Base ` ( Scalar ` P ) ) ) |
| 100 |
3 85 4 92 93 99 83
|
lmodvscld |
|- ( ( ph /\ k e. NN0 ) -> ( ( A ` k ) .x. ( k .^ X ) ) e. B ) |
| 101 |
100
|
adantlr |
|- ( ( ( ph /\ K =/= ( 0g ` P ) ) /\ k e. NN0 ) -> ( ( A ` k ) .x. ( k .^ X ) ) e. B ) |
| 102 |
|
fz0ssnn0 |
|- ( 0 ... D ) C_ NN0 |
| 103 |
102
|
a1i |
|- ( ( ph /\ K =/= ( 0g ` P ) ) -> ( 0 ... D ) C_ NN0 ) |
| 104 |
3 15 43 45 90 91 101 103
|
gsummptres2 |
|- ( ( ph /\ K =/= ( 0g ` P ) ) -> ( P gsum ( k e. NN0 |-> ( ( A ` k ) .x. ( k .^ X ) ) ) ) = ( P gsum ( k e. ( 0 ... D ) |-> ( ( A ` k ) .x. ( k .^ X ) ) ) ) ) |
| 105 |
39 104
|
eqtrd |
|- ( ( ph /\ K =/= ( 0g ` P ) ) -> K = ( P gsum ( k e. ( 0 ... D ) |-> ( ( A ` k ) .x. ( k .^ X ) ) ) ) ) |
| 106 |
36 105
|
pm2.61dane |
|- ( ph -> K = ( P gsum ( k e. ( 0 ... D ) |-> ( ( A ` k ) .x. ( k .^ X ) ) ) ) ) |