Metamath Proof Explorer


Theorem wlkiswwlks2

Description: A walk as word corresponds to the sequence of vertices in a walk in a simple pseudograph. (Contributed by Alexander van der Vekens, 21-Jul-2018) (Revised by AV, 10-Apr-2021)

Ref Expression
Assertion wlkiswwlks2 GUSHGraphPWWalksGffWalksGP

Proof

Step Hyp Ref Expression
1 eqid VtxG=VtxG
2 1 wwlkbp PWWalksGGVPWordVtxG
3 eqid EdgG=EdgG
4 1 3 iswwlks PWWalksGPPWordVtxGi0..^P1PiPi+1EdgG
5 ovex 0..^P1V
6 mptexg 0..^P1Vx0..^P1iEdgG-1PxPx+1V
7 5 6 mp1i PPWordVtxGGVPWordVtxGGUSHGraphx0..^P1iEdgG-1PxPx+1V
8 simprr PPWordVtxGGVPWordVtxGGUSHGraphGUSHGraph
9 simplr PPWordVtxGGVPWordVtxGGUSHGraphPWordVtxG
10 hashge1 PWordVtxGP1P
11 10 ancoms PPWordVtxG1P
12 11 adantr PPWordVtxGGVPWordVtxGGUSHGraph1P
13 8 9 12 3jca PPWordVtxGGVPWordVtxGGUSHGraphGUSHGraphPWordVtxG1P
14 13 adantr PPWordVtxGGVPWordVtxGGUSHGraphf=x0..^P1iEdgG-1PxPx+1GUSHGraphPWordVtxG1P
15 edgval EdgG=raniEdgG
16 15 a1i PPWordVtxGGVPWordVtxGGUSHGraphf=x0..^P1iEdgG-1PxPx+1EdgG=raniEdgG
17 16 eleq2d PPWordVtxGGVPWordVtxGGUSHGraphf=x0..^P1iEdgG-1PxPx+1PiPi+1EdgGPiPi+1raniEdgG
18 17 ralbidv PPWordVtxGGVPWordVtxGGUSHGraphf=x0..^P1iEdgG-1PxPx+1i0..^P1PiPi+1EdgGi0..^P1PiPi+1raniEdgG
19 18 biimpd PPWordVtxGGVPWordVtxGGUSHGraphf=x0..^P1iEdgG-1PxPx+1i0..^P1PiPi+1EdgGi0..^P1PiPi+1raniEdgG
20 eqid x0..^P1iEdgG-1PxPx+1=x0..^P1iEdgG-1PxPx+1
21 eqid iEdgG=iEdgG
22 20 21 wlkiswwlks2lem6 GUSHGraphPWordVtxG1Pi0..^P1PiPi+1raniEdgGx0..^P1iEdgG-1PxPx+1WorddomiEdgGP:0x0..^P1iEdgG-1PxPx+1VtxGi0..^x0..^P1iEdgG-1PxPx+1iEdgGx0..^P1iEdgG-1PxPx+1i=PiPi+1
23 14 19 22 sylsyld PPWordVtxGGVPWordVtxGGUSHGraphf=x0..^P1iEdgG-1PxPx+1i0..^P1PiPi+1EdgGx0..^P1iEdgG-1PxPx+1WorddomiEdgGP:0x0..^P1iEdgG-1PxPx+1VtxGi0..^x0..^P1iEdgG-1PxPx+1iEdgGx0..^P1iEdgG-1PxPx+1i=PiPi+1
24 eleq1 f=x0..^P1iEdgG-1PxPx+1fWorddomiEdgGx0..^P1iEdgG-1PxPx+1WorddomiEdgG
25 fveq2 f=x0..^P1iEdgG-1PxPx+1f=x0..^P1iEdgG-1PxPx+1
26 25 oveq2d f=x0..^P1iEdgG-1PxPx+10f=0x0..^P1iEdgG-1PxPx+1
27 26 feq2d f=x0..^P1iEdgG-1PxPx+1P:0fVtxGP:0x0..^P1iEdgG-1PxPx+1VtxG
28 25 oveq2d f=x0..^P1iEdgG-1PxPx+10..^f=0..^x0..^P1iEdgG-1PxPx+1
29 fveq1 f=x0..^P1iEdgG-1PxPx+1fi=x0..^P1iEdgG-1PxPx+1i
30 29 fveqeq2d f=x0..^P1iEdgG-1PxPx+1iEdgGfi=PiPi+1iEdgGx0..^P1iEdgG-1PxPx+1i=PiPi+1
31 28 30 raleqbidv f=x0..^P1iEdgG-1PxPx+1i0..^fiEdgGfi=PiPi+1i0..^x0..^P1iEdgG-1PxPx+1iEdgGx0..^P1iEdgG-1PxPx+1i=PiPi+1
32 24 27 31 3anbi123d f=x0..^P1iEdgG-1PxPx+1fWorddomiEdgGP:0fVtxGi0..^fiEdgGfi=PiPi+1x0..^P1iEdgG-1PxPx+1WorddomiEdgGP:0x0..^P1iEdgG-1PxPx+1VtxGi0..^x0..^P1iEdgG-1PxPx+1iEdgGx0..^P1iEdgG-1PxPx+1i=PiPi+1
33 32 imbi2d f=x0..^P1iEdgG-1PxPx+1i0..^P1PiPi+1EdgGfWorddomiEdgGP:0fVtxGi0..^fiEdgGfi=PiPi+1i0..^P1PiPi+1EdgGx0..^P1iEdgG-1PxPx+1WorddomiEdgGP:0x0..^P1iEdgG-1PxPx+1VtxGi0..^x0..^P1iEdgG-1PxPx+1iEdgGx0..^P1iEdgG-1PxPx+1i=PiPi+1
34 33 adantl PPWordVtxGGVPWordVtxGGUSHGraphf=x0..^P1iEdgG-1PxPx+1i0..^P1PiPi+1EdgGfWorddomiEdgGP:0fVtxGi0..^fiEdgGfi=PiPi+1i0..^P1PiPi+1EdgGx0..^P1iEdgG-1PxPx+1WorddomiEdgGP:0x0..^P1iEdgG-1PxPx+1VtxGi0..^x0..^P1iEdgG-1PxPx+1iEdgGx0..^P1iEdgG-1PxPx+1i=PiPi+1
35 23 34 mpbird PPWordVtxGGVPWordVtxGGUSHGraphf=x0..^P1iEdgG-1PxPx+1i0..^P1PiPi+1EdgGfWorddomiEdgGP:0fVtxGi0..^fiEdgGfi=PiPi+1
36 7 35 spcimedv PPWordVtxGGVPWordVtxGGUSHGraphi0..^P1PiPi+1EdgGffWorddomiEdgGP:0fVtxGi0..^fiEdgGfi=PiPi+1
37 36 ex PPWordVtxGGVPWordVtxGGUSHGraphi0..^P1PiPi+1EdgGffWorddomiEdgGP:0fVtxGi0..^fiEdgGfi=PiPi+1
38 37 com23 PPWordVtxGi0..^P1PiPi+1EdgGGVPWordVtxGGUSHGraphffWorddomiEdgGP:0fVtxGi0..^fiEdgGfi=PiPi+1
39 38 3impia PPWordVtxGi0..^P1PiPi+1EdgGGVPWordVtxGGUSHGraphffWorddomiEdgGP:0fVtxGi0..^fiEdgGfi=PiPi+1
40 39 expd PPWordVtxGi0..^P1PiPi+1EdgGGVPWordVtxGGUSHGraphffWorddomiEdgGP:0fVtxGi0..^fiEdgGfi=PiPi+1
41 40 impcom GVPWordVtxGPPWordVtxGi0..^P1PiPi+1EdgGGUSHGraphffWorddomiEdgGP:0fVtxGi0..^fiEdgGfi=PiPi+1
42 41 imp GVPWordVtxGPPWordVtxGi0..^P1PiPi+1EdgGGUSHGraphffWorddomiEdgGP:0fVtxGi0..^fiEdgGfi=PiPi+1
43 uspgrupgr GUSHGraphGUPGraph
44 1 21 upgriswlk GUPGraphfWalksGPfWorddomiEdgGP:0fVtxGi0..^fiEdgGfi=PiPi+1
45 43 44 syl GUSHGraphfWalksGPfWorddomiEdgGP:0fVtxGi0..^fiEdgGfi=PiPi+1
46 45 adantl GVPWordVtxGPPWordVtxGi0..^P1PiPi+1EdgGGUSHGraphfWalksGPfWorddomiEdgGP:0fVtxGi0..^fiEdgGfi=PiPi+1
47 46 exbidv GVPWordVtxGPPWordVtxGi0..^P1PiPi+1EdgGGUSHGraphffWalksGPffWorddomiEdgGP:0fVtxGi0..^fiEdgGfi=PiPi+1
48 42 47 mpbird GVPWordVtxGPPWordVtxGi0..^P1PiPi+1EdgGGUSHGraphffWalksGP
49 48 ex GVPWordVtxGPPWordVtxGi0..^P1PiPi+1EdgGGUSHGraphffWalksGP
50 49 ex GVPWordVtxGPPWordVtxGi0..^P1PiPi+1EdgGGUSHGraphffWalksGP
51 4 50 biimtrid GVPWordVtxGPWWalksGGUSHGraphffWalksGP
52 2 51 mpcom PWWalksGGUSHGraphffWalksGP
53 52 com12 GUSHGraphPWWalksGffWalksGP