Description: A walk as word corresponds to the sequence of vertices in a walk in a simple pseudograph. (Contributed by Alexander van der Vekens, 21-Jul-2018) (Revised by AV, 10-Apr-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | wlkiswwlks2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid | |
|
2 | 1 | wwlkbp | |
3 | eqid | |
|
4 | 1 3 | iswwlks | |
5 | ovex | |
|
6 | mptexg | |
|
7 | 5 6 | mp1i | |
8 | simprr | |
|
9 | simplr | |
|
10 | hashge1 | |
|
11 | 10 | ancoms | |
12 | 11 | adantr | |
13 | 8 9 12 | 3jca | |
14 | 13 | adantr | |
15 | edgval | |
|
16 | 15 | a1i | |
17 | 16 | eleq2d | |
18 | 17 | ralbidv | |
19 | 18 | biimpd | |
20 | eqid | |
|
21 | eqid | |
|
22 | 20 21 | wlkiswwlks2lem6 | |
23 | 14 19 22 | sylsyld | |
24 | eleq1 | |
|
25 | fveq2 | |
|
26 | 25 | oveq2d | |
27 | 26 | feq2d | |
28 | 25 | oveq2d | |
29 | fveq1 | |
|
30 | 29 | fveqeq2d | |
31 | 28 30 | raleqbidv | |
32 | 24 27 31 | 3anbi123d | |
33 | 32 | imbi2d | |
34 | 33 | adantl | |
35 | 23 34 | mpbird | |
36 | 7 35 | spcimedv | |
37 | 36 | ex | |
38 | 37 | com23 | |
39 | 38 | 3impia | |
40 | 39 | expd | |
41 | 40 | impcom | |
42 | 41 | imp | |
43 | uspgrupgr | |
|
44 | 1 21 | upgriswlk | |
45 | 43 44 | syl | |
46 | 45 | adantl | |
47 | 46 | exbidv | |
48 | 42 47 | mpbird | |
49 | 48 | ex | |
50 | 49 | ex | |
51 | 4 50 | biimtrid | |
52 | 2 51 | mpcom | |
53 | 52 | com12 | |