Metamath Proof Explorer


Theorem wlkiswwlksupgr2

Description: A walk as word corresponds to the sequence of vertices in a walk in a pseudograph. This variant of wlkiswwlks2 does not require G to be a simple pseudograph, but it requires the Axiom of Choice ( ac6 ) for its proof. Notice that only the existence of a function f can be proven, but, in general, it cannot be "constructed" (as in wlkiswwlks2 ). (Contributed by Alexander van der Vekens, 21-Jul-2018) (Revised by AV, 10-Apr-2021)

Ref Expression
Assertion wlkiswwlksupgr2 GUPGraphPWWalksGffWalksGP

Proof

Step Hyp Ref Expression
1 eqid VtxG=VtxG
2 eqid EdgG=EdgG
3 1 2 iswwlks PWWalksGPPWordVtxGi0..^P1PiPi+1EdgG
4 edgval EdgG=raniEdgG
5 4 eleq2i PiPi+1EdgGPiPi+1raniEdgG
6 upgruhgr GUPGraphGUHGraph
7 eqid iEdgG=iEdgG
8 7 uhgrfun GUHGraphFuniEdgG
9 6 8 syl GUPGraphFuniEdgG
10 9 adantl PPWordVtxGGUPGraphFuniEdgG
11 elrnrexdm FuniEdgGPiPi+1raniEdgGxdomiEdgGPiPi+1=iEdgGx
12 eqcom iEdgGx=PiPi+1PiPi+1=iEdgGx
13 12 rexbii xdomiEdgGiEdgGx=PiPi+1xdomiEdgGPiPi+1=iEdgGx
14 11 13 syl6ibr FuniEdgGPiPi+1raniEdgGxdomiEdgGiEdgGx=PiPi+1
15 10 14 syl PPWordVtxGGUPGraphPiPi+1raniEdgGxdomiEdgGiEdgGx=PiPi+1
16 5 15 biimtrid PPWordVtxGGUPGraphPiPi+1EdgGxdomiEdgGiEdgGx=PiPi+1
17 16 ralimdv PPWordVtxGGUPGraphi0..^P1PiPi+1EdgGi0..^P1xdomiEdgGiEdgGx=PiPi+1
18 17 ex PPWordVtxGGUPGraphi0..^P1PiPi+1EdgGi0..^P1xdomiEdgGiEdgGx=PiPi+1
19 18 com23 PPWordVtxGi0..^P1PiPi+1EdgGGUPGraphi0..^P1xdomiEdgGiEdgGx=PiPi+1
20 19 3impia PPWordVtxGi0..^P1PiPi+1EdgGGUPGraphi0..^P1xdomiEdgGiEdgGx=PiPi+1
21 20 impcom GUPGraphPPWordVtxGi0..^P1PiPi+1EdgGi0..^P1xdomiEdgGiEdgGx=PiPi+1
22 ovex 0..^P1V
23 fvex iEdgGV
24 23 dmex domiEdgGV
25 fveqeq2 x=fiiEdgGx=PiPi+1iEdgGfi=PiPi+1
26 22 24 25 ac6 i0..^P1xdomiEdgGiEdgGx=PiPi+1ff:0..^P1domiEdgGi0..^P1iEdgGfi=PiPi+1
27 21 26 syl GUPGraphPPWordVtxGi0..^P1PiPi+1EdgGff:0..^P1domiEdgGi0..^P1iEdgGfi=PiPi+1
28 iswrdi f:0..^P1domiEdgGfWorddomiEdgG
29 28 adantr f:0..^P1domiEdgGi0..^P1iEdgGfi=PiPi+1fWorddomiEdgG
30 29 adantl GUPGraphPPWordVtxGi0..^P1PiPi+1EdgGf:0..^P1domiEdgGi0..^P1iEdgGfi=PiPi+1fWorddomiEdgG
31 len0nnbi PWordVtxGPP
32 31 biimpac PPWordVtxGP
33 wrdf PWordVtxGP:0..^PVtxG
34 nnz PP
35 fzoval P0..^P=0P1
36 34 35 syl P0..^P=0P1
37 36 adantr Pf:0..^P1domiEdgG0..^P=0P1
38 nnm1nn0 PP10
39 fnfzo0hash P10f:0..^P1domiEdgGf=P1
40 38 39 sylan Pf:0..^P1domiEdgGf=P1
41 40 eqcomd Pf:0..^P1domiEdgGP1=f
42 41 oveq2d Pf:0..^P1domiEdgG0P1=0f
43 37 42 eqtrd Pf:0..^P1domiEdgG0..^P=0f
44 43 feq2d Pf:0..^P1domiEdgGP:0..^PVtxGP:0fVtxG
45 44 biimpcd P:0..^PVtxGPf:0..^P1domiEdgGP:0fVtxG
46 45 expd P:0..^PVtxGPf:0..^P1domiEdgGP:0fVtxG
47 33 46 syl PWordVtxGPf:0..^P1domiEdgGP:0fVtxG
48 47 adantl PPWordVtxGPf:0..^P1domiEdgGP:0fVtxG
49 32 48 mpd PPWordVtxGf:0..^P1domiEdgGP:0fVtxG
50 49 3adant3 PPWordVtxGi0..^P1PiPi+1EdgGf:0..^P1domiEdgGP:0fVtxG
51 50 adantl GUPGraphPPWordVtxGi0..^P1PiPi+1EdgGf:0..^P1domiEdgGP:0fVtxG
52 51 com12 f:0..^P1domiEdgGGUPGraphPPWordVtxGi0..^P1PiPi+1EdgGP:0fVtxG
53 52 adantr f:0..^P1domiEdgGi0..^P1iEdgGfi=PiPi+1GUPGraphPPWordVtxGi0..^P1PiPi+1EdgGP:0fVtxG
54 53 impcom GUPGraphPPWordVtxGi0..^P1PiPi+1EdgGf:0..^P1domiEdgGi0..^P1iEdgGfi=PiPi+1P:0fVtxG
55 simpr GUPGraphPPWordVtxGi0..^P1PiPi+1EdgGf:0..^P1domiEdgGi0..^P1iEdgGfi=PiPi+1i0..^P1iEdgGfi=PiPi+1
56 32 40 sylan PPWordVtxGf:0..^P1domiEdgGf=P1
57 56 oveq2d PPWordVtxGf:0..^P1domiEdgG0..^f=0..^P1
58 57 ex PPWordVtxGf:0..^P1domiEdgG0..^f=0..^P1
59 58 3adant3 PPWordVtxGi0..^P1PiPi+1EdgGf:0..^P1domiEdgG0..^f=0..^P1
60 59 adantl GUPGraphPPWordVtxGi0..^P1PiPi+1EdgGf:0..^P1domiEdgG0..^f=0..^P1
61 60 imp GUPGraphPPWordVtxGi0..^P1PiPi+1EdgGf:0..^P1domiEdgG0..^f=0..^P1
62 61 adantr GUPGraphPPWordVtxGi0..^P1PiPi+1EdgGf:0..^P1domiEdgGi0..^P1iEdgGfi=PiPi+10..^f=0..^P1
63 62 raleqdv GUPGraphPPWordVtxGi0..^P1PiPi+1EdgGf:0..^P1domiEdgGi0..^P1iEdgGfi=PiPi+1i0..^fiEdgGfi=PiPi+1i0..^P1iEdgGfi=PiPi+1
64 55 63 mpbird GUPGraphPPWordVtxGi0..^P1PiPi+1EdgGf:0..^P1domiEdgGi0..^P1iEdgGfi=PiPi+1i0..^fiEdgGfi=PiPi+1
65 64 anasss GUPGraphPPWordVtxGi0..^P1PiPi+1EdgGf:0..^P1domiEdgGi0..^P1iEdgGfi=PiPi+1i0..^fiEdgGfi=PiPi+1
66 30 54 65 3jca GUPGraphPPWordVtxGi0..^P1PiPi+1EdgGf:0..^P1domiEdgGi0..^P1iEdgGfi=PiPi+1fWorddomiEdgGP:0fVtxGi0..^fiEdgGfi=PiPi+1
67 66 ex GUPGraphPPWordVtxGi0..^P1PiPi+1EdgGf:0..^P1domiEdgGi0..^P1iEdgGfi=PiPi+1fWorddomiEdgGP:0fVtxGi0..^fiEdgGfi=PiPi+1
68 67 eximdv GUPGraphPPWordVtxGi0..^P1PiPi+1EdgGff:0..^P1domiEdgGi0..^P1iEdgGfi=PiPi+1ffWorddomiEdgGP:0fVtxGi0..^fiEdgGfi=PiPi+1
69 27 68 mpd GUPGraphPPWordVtxGi0..^P1PiPi+1EdgGffWorddomiEdgGP:0fVtxGi0..^fiEdgGfi=PiPi+1
70 1 7 upgriswlk GUPGraphfWalksGPfWorddomiEdgGP:0fVtxGi0..^fiEdgGfi=PiPi+1
71 70 adantr GUPGraphPPWordVtxGi0..^P1PiPi+1EdgGfWalksGPfWorddomiEdgGP:0fVtxGi0..^fiEdgGfi=PiPi+1
72 71 exbidv GUPGraphPPWordVtxGi0..^P1PiPi+1EdgGffWalksGPffWorddomiEdgGP:0fVtxGi0..^fiEdgGfi=PiPi+1
73 69 72 mpbird GUPGraphPPWordVtxGi0..^P1PiPi+1EdgGffWalksGP
74 73 ex GUPGraphPPWordVtxGi0..^P1PiPi+1EdgGffWalksGP
75 3 74 biimtrid GUPGraphPWWalksGffWalksGP