Description: A walk as word corresponds to the sequence of vertices in a walk in a pseudograph. This variant of wlkiswwlks2 does not require G to be a simple pseudograph, but it requires the Axiom of Choice ( ac6 ) for its proof. Notice that only the existence of a function f can be proven, but, in general, it cannot be "constructed" (as in wlkiswwlks2 ). (Contributed by Alexander van der Vekens, 21-Jul-2018) (Revised by AV, 10-Apr-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | wlkiswwlksupgr2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid | |
|
2 | eqid | |
|
3 | 1 2 | iswwlks | |
4 | edgval | |
|
5 | 4 | eleq2i | |
6 | upgruhgr | |
|
7 | eqid | |
|
8 | 7 | uhgrfun | |
9 | 6 8 | syl | |
10 | 9 | adantl | |
11 | elrnrexdm | |
|
12 | eqcom | |
|
13 | 12 | rexbii | |
14 | 11 13 | syl6ibr | |
15 | 10 14 | syl | |
16 | 5 15 | biimtrid | |
17 | 16 | ralimdv | |
18 | 17 | ex | |
19 | 18 | com23 | |
20 | 19 | 3impia | |
21 | 20 | impcom | |
22 | ovex | |
|
23 | fvex | |
|
24 | 23 | dmex | |
25 | fveqeq2 | |
|
26 | 22 24 25 | ac6 | |
27 | 21 26 | syl | |
28 | iswrdi | |
|
29 | 28 | adantr | |
30 | 29 | adantl | |
31 | len0nnbi | |
|
32 | 31 | biimpac | |
33 | wrdf | |
|
34 | nnz | |
|
35 | fzoval | |
|
36 | 34 35 | syl | |
37 | 36 | adantr | |
38 | nnm1nn0 | |
|
39 | fnfzo0hash | |
|
40 | 38 39 | sylan | |
41 | 40 | eqcomd | |
42 | 41 | oveq2d | |
43 | 37 42 | eqtrd | |
44 | 43 | feq2d | |
45 | 44 | biimpcd | |
46 | 45 | expd | |
47 | 33 46 | syl | |
48 | 47 | adantl | |
49 | 32 48 | mpd | |
50 | 49 | 3adant3 | |
51 | 50 | adantl | |
52 | 51 | com12 | |
53 | 52 | adantr | |
54 | 53 | impcom | |
55 | simpr | |
|
56 | 32 40 | sylan | |
57 | 56 | oveq2d | |
58 | 57 | ex | |
59 | 58 | 3adant3 | |
60 | 59 | adantl | |
61 | 60 | imp | |
62 | 61 | adantr | |
63 | 62 | raleqdv | |
64 | 55 63 | mpbird | |
65 | 64 | anasss | |
66 | 30 54 65 | 3jca | |
67 | 66 | ex | |
68 | 67 | eximdv | |
69 | 27 68 | mpd | |
70 | 1 7 | upgriswlk | |
71 | 70 | adantr | |
72 | 71 | exbidv | |
73 | 69 72 | mpbird | |
74 | 73 | ex | |
75 | 3 74 | biimtrid | |