Description: For two different vertices, a walk of length 2 between these vertices is a simple path of length 2 between these vertices in a simple graph. (Contributed by Alexander van der Vekens, 2-Mar-2018) (Revised by AV, 13-May-2021) (Revised by AV, 16-Mar-2022)
Ref | Expression | ||
---|---|---|---|
Assertion | wpthswwlks2on | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wwlknon | |
|
2 | 1 | a1i | |
3 | 2 | anbi1d | |
4 | 3anass | |
|
5 | 4 | anbi1i | |
6 | anass | |
|
7 | 5 6 | bitri | |
8 | 3 7 | bitrdi | |
9 | 8 | rabbidva2 | |
10 | usgrupgr | |
|
11 | wlklnwwlknupgr | |
|
12 | 10 11 | syl | |
13 | 12 | bicomd | |
14 | 13 | adantr | |
15 | simprl | |
|
16 | simprl | |
|
17 | 16 | adantr | |
18 | fveq2 | |
|
19 | 18 | ad2antll | |
20 | simprr | |
|
21 | 20 | adantr | |
22 | 19 21 | eqtrd | |
23 | eqid | |
|
24 | 23 | wlkp | |
25 | oveq2 | |
|
26 | 25 | feq2d | |
27 | 24 26 | syl5ibcom | |
28 | 27 | imp | |
29 | id | |
|
30 | 2nn0 | |
|
31 | 0elfz | |
|
32 | 30 31 | mp1i | |
33 | 29 32 | ffvelcdmd | |
34 | nn0fz0 | |
|
35 | 30 34 | mpbi | |
36 | 35 | a1i | |
37 | 29 36 | ffvelcdmd | |
38 | 33 37 | jca | |
39 | 28 38 | syl | |
40 | eleq1 | |
|
41 | eleq1 | |
|
42 | 40 41 | bi2anan9 | |
43 | 39 42 | imbitrid | |
44 | 43 | adantl | |
45 | 44 | imp | |
46 | vex | |
|
47 | vex | |
|
48 | 46 47 | pm3.2i | |
49 | 23 | iswlkon | |
50 | 45 48 49 | sylancl | |
51 | 15 17 22 50 | mpbir3and | |
52 | simplll | |
|
53 | simprr | |
|
54 | simpllr | |
|
55 | usgr2wlkspth | |
|
56 | 52 53 54 55 | syl3anc | |
57 | 51 56 | mpbid | |
58 | 57 | ex | |
59 | 58 | eximdv | |
60 | 59 | ex | |
61 | 60 | com23 | |
62 | 14 61 | sylbid | |
63 | 62 | imp | |
64 | 63 | pm4.71d | |
65 | 64 | bicomd | |
66 | 65 | rabbidva | |
67 | 9 66 | eqtrd | |
68 | 23 | iswspthsnon | |
69 | 23 | iswwlksnon | |
70 | 67 68 69 | 3eqtr4g | |