Metamath Proof Explorer


Theorem wpthswwlks2on

Description: For two different vertices, a walk of length 2 between these vertices is a simple path of length 2 between these vertices in a simple graph. (Contributed by Alexander van der Vekens, 2-Mar-2018) (Revised by AV, 13-May-2021) (Revised by AV, 16-Mar-2022)

Ref Expression
Assertion wpthswwlks2on GUSGraphABA2WSPathsNOnGB=A2WWalksNOnGB

Proof

Step Hyp Ref Expression
1 wwlknon wA2WWalksNOnGBw2WWalksNGw0=Aw2=B
2 1 a1i GUSGraphABwA2WWalksNOnGBw2WWalksNGw0=Aw2=B
3 2 anbi1d GUSGraphABwA2WWalksNOnGBffASPathsOnGBww2WWalksNGw0=Aw2=BffASPathsOnGBw
4 3anass w2WWalksNGw0=Aw2=Bw2WWalksNGw0=Aw2=B
5 4 anbi1i w2WWalksNGw0=Aw2=BffASPathsOnGBww2WWalksNGw0=Aw2=BffASPathsOnGBw
6 anass w2WWalksNGw0=Aw2=BffASPathsOnGBww2WWalksNGw0=Aw2=BffASPathsOnGBw
7 5 6 bitri w2WWalksNGw0=Aw2=BffASPathsOnGBww2WWalksNGw0=Aw2=BffASPathsOnGBw
8 3 7 bitrdi GUSGraphABwA2WWalksNOnGBffASPathsOnGBww2WWalksNGw0=Aw2=BffASPathsOnGBw
9 8 rabbidva2 GUSGraphABwA2WWalksNOnGB|ffASPathsOnGBw=w2WWalksNG|w0=Aw2=BffASPathsOnGBw
10 usgrupgr GUSGraphGUPGraph
11 wlklnwwlknupgr GUPGraphffWalksGwf=2w2WWalksNG
12 10 11 syl GUSGraphffWalksGwf=2w2WWalksNG
13 12 bicomd GUSGraphw2WWalksNGffWalksGwf=2
14 13 adantr GUSGraphABw2WWalksNGffWalksGwf=2
15 simprl GUSGraphABw0=Aw2=BfWalksGwf=2fWalksGw
16 simprl GUSGraphABw0=Aw2=Bw0=A
17 16 adantr GUSGraphABw0=Aw2=BfWalksGwf=2w0=A
18 fveq2 f=2wf=w2
19 18 ad2antll GUSGraphABw0=Aw2=BfWalksGwf=2wf=w2
20 simprr GUSGraphABw0=Aw2=Bw2=B
21 20 adantr GUSGraphABw0=Aw2=BfWalksGwf=2w2=B
22 19 21 eqtrd GUSGraphABw0=Aw2=BfWalksGwf=2wf=B
23 eqid VtxG=VtxG
24 23 wlkp fWalksGww:0fVtxG
25 oveq2 f=20f=02
26 25 feq2d f=2w:0fVtxGw:02VtxG
27 24 26 syl5ibcom fWalksGwf=2w:02VtxG
28 27 imp fWalksGwf=2w:02VtxG
29 id w:02VtxGw:02VtxG
30 2nn0 20
31 0elfz 20002
32 30 31 mp1i w:02VtxG002
33 29 32 ffvelcdmd w:02VtxGw0VtxG
34 nn0fz0 20202
35 30 34 mpbi 202
36 35 a1i w:02VtxG202
37 29 36 ffvelcdmd w:02VtxGw2VtxG
38 33 37 jca w:02VtxGw0VtxGw2VtxG
39 28 38 syl fWalksGwf=2w0VtxGw2VtxG
40 eleq1 w0=Aw0VtxGAVtxG
41 eleq1 w2=Bw2VtxGBVtxG
42 40 41 bi2anan9 w0=Aw2=Bw0VtxGw2VtxGAVtxGBVtxG
43 39 42 imbitrid w0=Aw2=BfWalksGwf=2AVtxGBVtxG
44 43 adantl GUSGraphABw0=Aw2=BfWalksGwf=2AVtxGBVtxG
45 44 imp GUSGraphABw0=Aw2=BfWalksGwf=2AVtxGBVtxG
46 vex fV
47 vex wV
48 46 47 pm3.2i fVwV
49 23 iswlkon AVtxGBVtxGfVwVfAWalksOnGBwfWalksGww0=Awf=B
50 45 48 49 sylancl GUSGraphABw0=Aw2=BfWalksGwf=2fAWalksOnGBwfWalksGww0=Awf=B
51 15 17 22 50 mpbir3and GUSGraphABw0=Aw2=BfWalksGwf=2fAWalksOnGBw
52 simplll GUSGraphABw0=Aw2=BfWalksGwf=2GUSGraph
53 simprr GUSGraphABw0=Aw2=BfWalksGwf=2f=2
54 simpllr GUSGraphABw0=Aw2=BfWalksGwf=2AB
55 usgr2wlkspth GUSGraphf=2ABfAWalksOnGBwfASPathsOnGBw
56 52 53 54 55 syl3anc GUSGraphABw0=Aw2=BfWalksGwf=2fAWalksOnGBwfASPathsOnGBw
57 51 56 mpbid GUSGraphABw0=Aw2=BfWalksGwf=2fASPathsOnGBw
58 57 ex GUSGraphABw0=Aw2=BfWalksGwf=2fASPathsOnGBw
59 58 eximdv GUSGraphABw0=Aw2=BffWalksGwf=2ffASPathsOnGBw
60 59 ex GUSGraphABw0=Aw2=BffWalksGwf=2ffASPathsOnGBw
61 60 com23 GUSGraphABffWalksGwf=2w0=Aw2=BffASPathsOnGBw
62 14 61 sylbid GUSGraphABw2WWalksNGw0=Aw2=BffASPathsOnGBw
63 62 imp GUSGraphABw2WWalksNGw0=Aw2=BffASPathsOnGBw
64 63 pm4.71d GUSGraphABw2WWalksNGw0=Aw2=Bw0=Aw2=BffASPathsOnGBw
65 64 bicomd GUSGraphABw2WWalksNGw0=Aw2=BffASPathsOnGBww0=Aw2=B
66 65 rabbidva GUSGraphABw2WWalksNG|w0=Aw2=BffASPathsOnGBw=w2WWalksNG|w0=Aw2=B
67 9 66 eqtrd GUSGraphABwA2WWalksNOnGB|ffASPathsOnGBw=w2WWalksNG|w0=Aw2=B
68 23 iswspthsnon A2WSPathsNOnGB=wA2WWalksNOnGB|ffASPathsOnGBw
69 23 iswwlksnon A2WWalksNOnGB=w2WWalksNG|w0=Aw2=B
70 67 68 69 3eqtr4g GUSGraphABA2WSPathsNOnGB=A2WWalksNOnGB