Metamath Proof Explorer


Theorem wuncval2

Description: Our earlier expression for a containing weak universe is in fact the weak universe closure. (Contributed by Mario Carneiro, 2-Jan-2017)

Ref Expression
Hypotheses wuncval2.f F=reczVzzxz𝒫xxranyzxyA1𝑜ω
wuncval2.u U=ranF
Assertion wuncval2 AVwUniClA=U

Proof

Step Hyp Ref Expression
1 wuncval2.f F=reczVzzxz𝒫xxranyzxyA1𝑜ω
2 wuncval2.u U=ranF
3 1 2 wunex2 AVUWUniAU
4 wuncss UWUniAUwUniClAU
5 3 4 syl AVwUniClAU
6 frfnom reczVzzxz𝒫xxranyzxyA1𝑜ωFnω
7 1 fneq1i FFnωreczVzzxz𝒫xxranyzxyA1𝑜ωFnω
8 6 7 mpbir FFnω
9 fniunfv FFnωmωFm=ranF
10 8 9 ax-mp mωFm=ranF
11 2 10 eqtr4i U=mωFm
12 fveq2 m=Fm=F
13 12 sseq1d m=FmwUniClAFwUniClA
14 fveq2 m=nFm=Fn
15 14 sseq1d m=nFmwUniClAFnwUniClA
16 fveq2 m=sucnFm=Fsucn
17 16 sseq1d m=sucnFmwUniClAFsucnwUniClA
18 1on 1𝑜On
19 unexg AV1𝑜OnA1𝑜V
20 18 19 mpan2 AVA1𝑜V
21 1 fveq1i F=reczVzzxz𝒫xxranyzxyA1𝑜ω
22 fr0g A1𝑜VreczVzzxz𝒫xxranyzxyA1𝑜ω=A1𝑜
23 21 22 eqtrid A1𝑜VF=A1𝑜
24 20 23 syl AVF=A1𝑜
25 wuncid AVAwUniClA
26 df1o2 1𝑜=
27 wunccl AVwUniClAWUni
28 27 wun0 AVwUniClA
29 28 snssd AVwUniClA
30 26 29 eqsstrid AV1𝑜wUniClA
31 25 30 unssd AVA1𝑜wUniClA
32 24 31 eqsstrd AVFwUniClA
33 simplr AVnωFnwUniClAnω
34 fvex FnV
35 34 uniex FnV
36 34 35 unex FnFnV
37 prex 𝒫uuV
38 34 mptex vFnuvV
39 38 rnex ranvFnuvV
40 37 39 unex 𝒫uuranvFnuvV
41 34 40 iunex uFn𝒫uuranvFnuvV
42 36 41 unex FnFnuFn𝒫uuranvFnuvV
43 id w=zw=z
44 unieq w=zw=z
45 43 44 uneq12d w=zww=zz
46 pweq u=x𝒫u=𝒫x
47 unieq u=xu=x
48 46 47 preq12d u=x𝒫uu=𝒫xx
49 preq1 u=xuv=xv
50 49 mpteq2dv u=xvwuv=vwxv
51 50 rneqd u=xranvwuv=ranvwxv
52 48 51 uneq12d u=x𝒫uuranvwuv=𝒫xxranvwxv
53 52 cbviunv uw𝒫uuranvwuv=xw𝒫xxranvwxv
54 preq2 v=yxv=xy
55 54 cbvmptv vwxv=ywxy
56 mpteq1 w=zywxy=yzxy
57 55 56 eqtrid w=zvwxv=yzxy
58 57 rneqd w=zranvwxv=ranyzxy
59 58 uneq2d w=z𝒫xxranvwxv=𝒫xxranyzxy
60 43 59 iuneq12d w=zxw𝒫xxranvwxv=xz𝒫xxranyzxy
61 53 60 eqtrid w=zuw𝒫uuranvwuv=xz𝒫xxranyzxy
62 45 61 uneq12d w=zwwuw𝒫uuranvwuv=zzxz𝒫xxranyzxy
63 id w=Fnw=Fn
64 unieq w=Fnw=Fn
65 63 64 uneq12d w=Fnww=FnFn
66 mpteq1 w=Fnvwuv=vFnuv
67 66 rneqd w=Fnranvwuv=ranvFnuv
68 67 uneq2d w=Fn𝒫uuranvwuv=𝒫uuranvFnuv
69 63 68 iuneq12d w=Fnuw𝒫uuranvwuv=uFn𝒫uuranvFnuv
70 65 69 uneq12d w=Fnwwuw𝒫uuranvwuv=FnFnuFn𝒫uuranvFnuv
71 1 62 70 frsucmpt2 nωFnFnuFn𝒫uuranvFnuvVFsucn=FnFnuFn𝒫uuranvFnuv
72 33 42 71 sylancl AVnωFnwUniClAFsucn=FnFnuFn𝒫uuranvFnuv
73 simpr AVnωFnwUniClAFnwUniClA
74 27 ad3antrrr AVnωFnwUniClAuFnwUniClAWUni
75 73 sselda AVnωFnwUniClAuFnuwUniClA
76 74 75 wunelss AVnωFnwUniClAuFnuwUniClA
77 76 ralrimiva AVnωFnwUniClAuFnuwUniClA
78 unissb FnwUniClAuFnuwUniClA
79 77 78 sylibr AVnωFnwUniClAFnwUniClA
80 73 79 unssd AVnωFnwUniClAFnFnwUniClA
81 74 75 wunpw AVnωFnwUniClAuFn𝒫uwUniClA
82 74 75 wununi AVnωFnwUniClAuFnuwUniClA
83 81 82 prssd AVnωFnwUniClAuFn𝒫uuwUniClA
84 74 adantr AVnωFnwUniClAuFnvFnwUniClAWUni
85 75 adantr AVnωFnwUniClAuFnvFnuwUniClA
86 simplr AVnωFnwUniClAuFnFnwUniClA
87 86 sselda AVnωFnwUniClAuFnvFnvwUniClA
88 84 85 87 wunpr AVnωFnwUniClAuFnvFnuvwUniClA
89 88 fmpttd AVnωFnwUniClAuFnvFnuv:FnwUniClA
90 89 frnd AVnωFnwUniClAuFnranvFnuvwUniClA
91 83 90 unssd AVnωFnwUniClAuFn𝒫uuranvFnuvwUniClA
92 91 ralrimiva AVnωFnwUniClAuFn𝒫uuranvFnuvwUniClA
93 iunss uFn𝒫uuranvFnuvwUniClAuFn𝒫uuranvFnuvwUniClA
94 92 93 sylibr AVnωFnwUniClAuFn𝒫uuranvFnuvwUniClA
95 80 94 unssd AVnωFnwUniClAFnFnuFn𝒫uuranvFnuvwUniClA
96 72 95 eqsstrd AVnωFnwUniClAFsucnwUniClA
97 96 ex AVnωFnwUniClAFsucnwUniClA
98 97 expcom nωAVFnwUniClAFsucnwUniClA
99 13 15 17 32 98 finds2 mωAVFmwUniClA
100 99 com12 AVmωFmwUniClA
101 100 ralrimiv AVmωFmwUniClA
102 iunss mωFmwUniClAmωFmwUniClA
103 101 102 sylibr AVmωFmwUniClA
104 11 103 eqsstrid AVUwUniClA
105 5 104 eqssd AVwUniClA=U