Step |
Hyp |
Ref |
Expression |
1 |
|
wwlksnextbij0.v |
|
2 |
|
wwlksnextbij0.e |
|
3 |
|
wwlksnextbij0.d |
|
4 |
|
3anass |
|
5 |
4
|
bianass |
|
6 |
1
|
wwlknbp |
|
7 |
|
simpl |
|
8 |
|
simpl |
|
9 |
|
nn0re |
|
10 |
|
2re |
|
11 |
10
|
a1i |
|
12 |
|
nn0ge0 |
|
13 |
|
2pos |
|
14 |
13
|
a1i |
|
15 |
9 11 12 14
|
addgegt0d |
|
16 |
15
|
adantr |
|
17 |
|
breq2 |
|
18 |
17
|
ad2antll |
|
19 |
16 18
|
mpbird |
|
20 |
|
hashgt0n0 |
|
21 |
8 19 20
|
syl2an2 |
|
22 |
|
lswcl |
|
23 |
8 21 22
|
syl2an2 |
|
24 |
23
|
adantrr |
|
25 |
|
pfxcl |
|
26 |
|
eleq1 |
|
27 |
25 26
|
syl5ibr |
|
28 |
27
|
eqcoms |
|
29 |
28
|
adantr |
|
30 |
29
|
com12 |
|
31 |
30
|
adantr |
|
32 |
31
|
imp |
|
33 |
32
|
adantl |
|
34 |
|
oveq1 |
|
35 |
34
|
eqcoms |
|
36 |
35
|
adantr |
|
37 |
36
|
ad2antll |
|
38 |
|
oveq1 |
|
39 |
38
|
adantl |
|
40 |
|
nn0cn |
|
41 |
|
2cnd |
|
42 |
|
1cnd |
|
43 |
40 41 42
|
addsubassd |
|
44 |
|
2m1e1 |
|
45 |
44
|
a1i |
|
46 |
45
|
oveq2d |
|
47 |
43 46
|
eqtrd |
|
48 |
39 47
|
sylan9eqr |
|
49 |
48
|
oveq2d |
|
50 |
49
|
oveq1d |
|
51 |
|
pfxlswccat |
|
52 |
8 21 51
|
syl2an2 |
|
53 |
50 52
|
eqtr3d |
|
54 |
53
|
adantrr |
|
55 |
37 54
|
eqtr2d |
|
56 |
|
simprrr |
|
57 |
1 2
|
wwlksnextbi |
|
58 |
7 24 33 55 56 57
|
syl23anc |
|
59 |
58
|
exbiri |
|
60 |
59
|
com23 |
|
61 |
60
|
3ad2ant2 |
|
62 |
6 61
|
mpcom |
|
63 |
62
|
expcomd |
|
64 |
63
|
imp |
|
65 |
1 2
|
wwlknp |
|
66 |
40 42 42
|
addassd |
|
67 |
|
1p1e2 |
|
68 |
67
|
a1i |
|
69 |
68
|
oveq2d |
|
70 |
66 69
|
eqtrd |
|
71 |
70
|
eqeq2d |
|
72 |
71
|
biimpd |
|
73 |
72
|
adantr |
|
74 |
73
|
com12 |
|
75 |
74
|
adantl |
|
76 |
|
simpl |
|
77 |
75 76
|
jctild |
|
78 |
77
|
3adant3 |
|
79 |
65 78
|
syl |
|
80 |
79
|
com12 |
|
81 |
80
|
3adant1 |
|
82 |
6 81
|
syl |
|
83 |
82
|
adantr |
|
84 |
64 83
|
impbid |
|
85 |
84
|
ex |
|
86 |
85
|
pm5.32rd |
|
87 |
5 86
|
syl5bb |
|
88 |
87
|
rabbidva2 |
|
89 |
3 88
|
eqtrid |
|