Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
Ordering on Cartesian products
xpord2pred
Next ⟩
sexp2
Metamath Proof Explorer
Ascii
Unicode
Theorem
xpord2pred
Description:
Calculate the predecessor class in
frxp2
.
(Contributed by
Scott Fenton
, 22-Aug-2024)
Ref
Expression
Hypothesis
xpord2.1
⊢
T
=
x
y
|
x
∈
A
×
B
∧
y
∈
A
×
B
∧
1
st
x
R
1
st
y
∨
1
st
x
=
1
st
y
∧
2
nd
x
S
2
nd
y
∨
2
nd
x
=
2
nd
y
∧
x
≠
y
Assertion
xpord2pred
⊢
X
∈
A
∧
Y
∈
B
→
Pred
T
A
×
B
X
Y
=
Pred
R
A
X
∪
X
×
Pred
S
B
Y
∪
Y
∖
X
Y
Proof
Step
Hyp
Ref
Expression
1
xpord2.1
⊢
T
=
x
y
|
x
∈
A
×
B
∧
y
∈
A
×
B
∧
1
st
x
R
1
st
y
∨
1
st
x
=
1
st
y
∧
2
nd
x
S
2
nd
y
∨
2
nd
x
=
2
nd
y
∧
x
≠
y
2
opeq1
⊢
a
=
X
→
a
b
=
X
b
3
predeq3
⊢
a
b
=
X
b
→
Pred
T
A
×
B
a
b
=
Pred
T
A
×
B
X
b
4
2
3
syl
⊢
a
=
X
→
Pred
T
A
×
B
a
b
=
Pred
T
A
×
B
X
b
5
predeq3
⊢
a
=
X
→
Pred
R
A
a
=
Pred
R
A
X
6
sneq
⊢
a
=
X
→
a
=
X
7
5
6
uneq12d
⊢
a
=
X
→
Pred
R
A
a
∪
a
=
Pred
R
A
X
∪
X
8
7
xpeq1d
⊢
a
=
X
→
Pred
R
A
a
∪
a
×
Pred
S
B
b
∪
b
=
Pred
R
A
X
∪
X
×
Pred
S
B
b
∪
b
9
2
sneqd
⊢
a
=
X
→
a
b
=
X
b
10
8
9
difeq12d
⊢
a
=
X
→
Pred
R
A
a
∪
a
×
Pred
S
B
b
∪
b
∖
a
b
=
Pred
R
A
X
∪
X
×
Pred
S
B
b
∪
b
∖
X
b
11
4
10
eqeq12d
⊢
a
=
X
→
Pred
T
A
×
B
a
b
=
Pred
R
A
a
∪
a
×
Pred
S
B
b
∪
b
∖
a
b
↔
Pred
T
A
×
B
X
b
=
Pred
R
A
X
∪
X
×
Pred
S
B
b
∪
b
∖
X
b
12
opeq2
⊢
b
=
Y
→
X
b
=
X
Y
13
predeq3
⊢
X
b
=
X
Y
→
Pred
T
A
×
B
X
b
=
Pred
T
A
×
B
X
Y
14
12
13
syl
⊢
b
=
Y
→
Pred
T
A
×
B
X
b
=
Pred
T
A
×
B
X
Y
15
predeq3
⊢
b
=
Y
→
Pred
S
B
b
=
Pred
S
B
Y
16
sneq
⊢
b
=
Y
→
b
=
Y
17
15
16
uneq12d
⊢
b
=
Y
→
Pred
S
B
b
∪
b
=
Pred
S
B
Y
∪
Y
18
17
xpeq2d
⊢
b
=
Y
→
Pred
R
A
X
∪
X
×
Pred
S
B
b
∪
b
=
Pred
R
A
X
∪
X
×
Pred
S
B
Y
∪
Y
19
12
sneqd
⊢
b
=
Y
→
X
b
=
X
Y
20
18
19
difeq12d
⊢
b
=
Y
→
Pred
R
A
X
∪
X
×
Pred
S
B
b
∪
b
∖
X
b
=
Pred
R
A
X
∪
X
×
Pred
S
B
Y
∪
Y
∖
X
Y
21
14
20
eqeq12d
⊢
b
=
Y
→
Pred
T
A
×
B
X
b
=
Pred
R
A
X
∪
X
×
Pred
S
B
b
∪
b
∖
X
b
↔
Pred
T
A
×
B
X
Y
=
Pred
R
A
X
∪
X
×
Pred
S
B
Y
∪
Y
∖
X
Y
22
predel
⊢
e
∈
Pred
T
A
×
B
a
b
→
e
∈
A
×
B
23
22
a1i
⊢
a
∈
A
∧
b
∈
B
→
e
∈
Pred
T
A
×
B
a
b
→
e
∈
A
×
B
24
eldifi
⊢
e
∈
Pred
R
A
a
∪
a
×
Pred
S
B
b
∪
b
∖
a
b
→
e
∈
Pred
R
A
a
∪
a
×
Pred
S
B
b
∪
b
25
predss
⊢
Pred
R
A
a
⊆
A
26
25
a1i
⊢
a
∈
A
→
Pred
R
A
a
⊆
A
27
snssi
⊢
a
∈
A
→
a
⊆
A
28
26
27
unssd
⊢
a
∈
A
→
Pred
R
A
a
∪
a
⊆
A
29
predss
⊢
Pred
S
B
b
⊆
B
30
29
a1i
⊢
b
∈
B
→
Pred
S
B
b
⊆
B
31
snssi
⊢
b
∈
B
→
b
⊆
B
32
30
31
unssd
⊢
b
∈
B
→
Pred
S
B
b
∪
b
⊆
B
33
xpss12
⊢
Pred
R
A
a
∪
a
⊆
A
∧
Pred
S
B
b
∪
b
⊆
B
→
Pred
R
A
a
∪
a
×
Pred
S
B
b
∪
b
⊆
A
×
B
34
28
32
33
syl2an
⊢
a
∈
A
∧
b
∈
B
→
Pred
R
A
a
∪
a
×
Pred
S
B
b
∪
b
⊆
A
×
B
35
34
sseld
⊢
a
∈
A
∧
b
∈
B
→
e
∈
Pred
R
A
a
∪
a
×
Pred
S
B
b
∪
b
→
e
∈
A
×
B
36
24
35
syl5
⊢
a
∈
A
∧
b
∈
B
→
e
∈
Pred
R
A
a
∪
a
×
Pred
S
B
b
∪
b
∖
a
b
→
e
∈
A
×
B
37
elxp2
⊢
e
∈
A
×
B
↔
∃
c
∈
A
∃
d
∈
B
e
=
c
d
38
opex
⊢
a
b
∈
V
39
opex
⊢
c
d
∈
V
40
39
elpred
⊢
a
b
∈
V
→
c
d
∈
Pred
T
A
×
B
a
b
↔
c
d
∈
A
×
B
∧
c
d
T
a
b
41
38
40
ax-mp
⊢
c
d
∈
Pred
T
A
×
B
a
b
↔
c
d
∈
A
×
B
∧
c
d
T
a
b
42
opelxpi
⊢
c
∈
A
∧
d
∈
B
→
c
d
∈
A
×
B
43
42
adantl
⊢
a
∈
A
∧
b
∈
B
∧
c
∈
A
∧
d
∈
B
→
c
d
∈
A
×
B
44
43
biantrurd
⊢
a
∈
A
∧
b
∈
B
∧
c
∈
A
∧
d
∈
B
→
c
d
T
a
b
↔
c
d
∈
A
×
B
∧
c
d
T
a
b
45
1
xpord2lem
⊢
c
d
T
a
b
↔
c
∈
A
∧
d
∈
B
∧
a
∈
A
∧
b
∈
B
∧
c
R
a
∨
c
=
a
∧
d
S
b
∨
d
=
b
∧
c
≠
a
∨
d
≠
b
46
eldif
⊢
c
d
∈
Pred
R
A
a
∪
a
×
Pred
S
B
b
∪
b
∖
a
b
↔
c
d
∈
Pred
R
A
a
∪
a
×
Pred
S
B
b
∪
b
∧
¬
c
d
∈
a
b
47
opelxp
⊢
c
d
∈
Pred
R
A
a
∪
a
×
Pred
S
B
b
∪
b
↔
c
∈
Pred
R
A
a
∪
a
∧
d
∈
Pred
S
B
b
∪
b
48
elun
⊢
c
∈
Pred
R
A
a
∪
a
↔
c
∈
Pred
R
A
a
∨
c
∈
a
49
vex
⊢
c
∈
V
50
49
elpred
⊢
a
∈
V
→
c
∈
Pred
R
A
a
↔
c
∈
A
∧
c
R
a
51
50
elv
⊢
c
∈
Pred
R
A
a
↔
c
∈
A
∧
c
R
a
52
velsn
⊢
c
∈
a
↔
c
=
a
53
51
52
orbi12i
⊢
c
∈
Pred
R
A
a
∨
c
∈
a
↔
c
∈
A
∧
c
R
a
∨
c
=
a
54
48
53
bitri
⊢
c
∈
Pred
R
A
a
∪
a
↔
c
∈
A
∧
c
R
a
∨
c
=
a
55
elun
⊢
d
∈
Pred
S
B
b
∪
b
↔
d
∈
Pred
S
B
b
∨
d
∈
b
56
vex
⊢
d
∈
V
57
56
elpred
⊢
b
∈
V
→
d
∈
Pred
S
B
b
↔
d
∈
B
∧
d
S
b
58
57
elv
⊢
d
∈
Pred
S
B
b
↔
d
∈
B
∧
d
S
b
59
velsn
⊢
d
∈
b
↔
d
=
b
60
58
59
orbi12i
⊢
d
∈
Pred
S
B
b
∨
d
∈
b
↔
d
∈
B
∧
d
S
b
∨
d
=
b
61
55
60
bitri
⊢
d
∈
Pred
S
B
b
∪
b
↔
d
∈
B
∧
d
S
b
∨
d
=
b
62
54
61
anbi12i
⊢
c
∈
Pred
R
A
a
∪
a
∧
d
∈
Pred
S
B
b
∪
b
↔
c
∈
A
∧
c
R
a
∨
c
=
a
∧
d
∈
B
∧
d
S
b
∨
d
=
b
63
47
62
bitri
⊢
c
d
∈
Pred
R
A
a
∪
a
×
Pred
S
B
b
∪
b
↔
c
∈
A
∧
c
R
a
∨
c
=
a
∧
d
∈
B
∧
d
S
b
∨
d
=
b
64
39
elsn
⊢
c
d
∈
a
b
↔
c
d
=
a
b
65
64
notbii
⊢
¬
c
d
∈
a
b
↔
¬
c
d
=
a
b
66
df-ne
⊢
c
d
≠
a
b
↔
¬
c
d
=
a
b
67
49
56
opthne
⊢
c
d
≠
a
b
↔
c
≠
a
∨
d
≠
b
68
65
66
67
3bitr2i
⊢
¬
c
d
∈
a
b
↔
c
≠
a
∨
d
≠
b
69
63
68
anbi12i
⊢
c
d
∈
Pred
R
A
a
∪
a
×
Pred
S
B
b
∪
b
∧
¬
c
d
∈
a
b
↔
c
∈
A
∧
c
R
a
∨
c
=
a
∧
d
∈
B
∧
d
S
b
∨
d
=
b
∧
c
≠
a
∨
d
≠
b
70
46
69
bitri
⊢
c
d
∈
Pred
R
A
a
∪
a
×
Pred
S
B
b
∪
b
∖
a
b
↔
c
∈
A
∧
c
R
a
∨
c
=
a
∧
d
∈
B
∧
d
S
b
∨
d
=
b
∧
c
≠
a
∨
d
≠
b
71
simprl
⊢
a
∈
A
∧
b
∈
B
∧
c
∈
A
∧
d
∈
B
→
c
∈
A
72
71
biantrurd
⊢
a
∈
A
∧
b
∈
B
∧
c
∈
A
∧
d
∈
B
→
c
R
a
↔
c
∈
A
∧
c
R
a
73
72
orbi1d
⊢
a
∈
A
∧
b
∈
B
∧
c
∈
A
∧
d
∈
B
→
c
R
a
∨
c
=
a
↔
c
∈
A
∧
c
R
a
∨
c
=
a
74
simprr
⊢
a
∈
A
∧
b
∈
B
∧
c
∈
A
∧
d
∈
B
→
d
∈
B
75
74
biantrurd
⊢
a
∈
A
∧
b
∈
B
∧
c
∈
A
∧
d
∈
B
→
d
S
b
↔
d
∈
B
∧
d
S
b
76
75
orbi1d
⊢
a
∈
A
∧
b
∈
B
∧
c
∈
A
∧
d
∈
B
→
d
S
b
∨
d
=
b
↔
d
∈
B
∧
d
S
b
∨
d
=
b
77
73
76
3anbi12d
⊢
a
∈
A
∧
b
∈
B
∧
c
∈
A
∧
d
∈
B
→
c
R
a
∨
c
=
a
∧
d
S
b
∨
d
=
b
∧
c
≠
a
∨
d
≠
b
↔
c
∈
A
∧
c
R
a
∨
c
=
a
∧
d
∈
B
∧
d
S
b
∨
d
=
b
∧
c
≠
a
∨
d
≠
b
78
df-3an
⊢
c
∈
A
∧
c
R
a
∨
c
=
a
∧
d
∈
B
∧
d
S
b
∨
d
=
b
∧
c
≠
a
∨
d
≠
b
↔
c
∈
A
∧
c
R
a
∨
c
=
a
∧
d
∈
B
∧
d
S
b
∨
d
=
b
∧
c
≠
a
∨
d
≠
b
79
77
78
bitr2di
⊢
a
∈
A
∧
b
∈
B
∧
c
∈
A
∧
d
∈
B
→
c
∈
A
∧
c
R
a
∨
c
=
a
∧
d
∈
B
∧
d
S
b
∨
d
=
b
∧
c
≠
a
∨
d
≠
b
↔
c
R
a
∨
c
=
a
∧
d
S
b
∨
d
=
b
∧
c
≠
a
∨
d
≠
b
80
70
79
bitrid
⊢
a
∈
A
∧
b
∈
B
∧
c
∈
A
∧
d
∈
B
→
c
d
∈
Pred
R
A
a
∪
a
×
Pred
S
B
b
∪
b
∖
a
b
↔
c
R
a
∨
c
=
a
∧
d
S
b
∨
d
=
b
∧
c
≠
a
∨
d
≠
b
81
pm3.22
⊢
a
∈
A
∧
b
∈
B
∧
c
∈
A
∧
d
∈
B
→
c
∈
A
∧
d
∈
B
∧
a
∈
A
∧
b
∈
B
82
81
biantrurd
⊢
a
∈
A
∧
b
∈
B
∧
c
∈
A
∧
d
∈
B
→
c
R
a
∨
c
=
a
∧
d
S
b
∨
d
=
b
∧
c
≠
a
∨
d
≠
b
↔
c
∈
A
∧
d
∈
B
∧
a
∈
A
∧
b
∈
B
∧
c
R
a
∨
c
=
a
∧
d
S
b
∨
d
=
b
∧
c
≠
a
∨
d
≠
b
83
df-3an
⊢
c
∈
A
∧
d
∈
B
∧
a
∈
A
∧
b
∈
B
∧
c
R
a
∨
c
=
a
∧
d
S
b
∨
d
=
b
∧
c
≠
a
∨
d
≠
b
↔
c
∈
A
∧
d
∈
B
∧
a
∈
A
∧
b
∈
B
∧
c
R
a
∨
c
=
a
∧
d
S
b
∨
d
=
b
∧
c
≠
a
∨
d
≠
b
84
82
83
bitr4di
⊢
a
∈
A
∧
b
∈
B
∧
c
∈
A
∧
d
∈
B
→
c
R
a
∨
c
=
a
∧
d
S
b
∨
d
=
b
∧
c
≠
a
∨
d
≠
b
↔
c
∈
A
∧
d
∈
B
∧
a
∈
A
∧
b
∈
B
∧
c
R
a
∨
c
=
a
∧
d
S
b
∨
d
=
b
∧
c
≠
a
∨
d
≠
b
85
80
84
bitr2d
⊢
a
∈
A
∧
b
∈
B
∧
c
∈
A
∧
d
∈
B
→
c
∈
A
∧
d
∈
B
∧
a
∈
A
∧
b
∈
B
∧
c
R
a
∨
c
=
a
∧
d
S
b
∨
d
=
b
∧
c
≠
a
∨
d
≠
b
↔
c
d
∈
Pred
R
A
a
∪
a
×
Pred
S
B
b
∪
b
∖
a
b
86
45
85
bitrid
⊢
a
∈
A
∧
b
∈
B
∧
c
∈
A
∧
d
∈
B
→
c
d
T
a
b
↔
c
d
∈
Pred
R
A
a
∪
a
×
Pred
S
B
b
∪
b
∖
a
b
87
44
86
bitr3d
⊢
a
∈
A
∧
b
∈
B
∧
c
∈
A
∧
d
∈
B
→
c
d
∈
A
×
B
∧
c
d
T
a
b
↔
c
d
∈
Pred
R
A
a
∪
a
×
Pred
S
B
b
∪
b
∖
a
b
88
41
87
bitrid
⊢
a
∈
A
∧
b
∈
B
∧
c
∈
A
∧
d
∈
B
→
c
d
∈
Pred
T
A
×
B
a
b
↔
c
d
∈
Pred
R
A
a
∪
a
×
Pred
S
B
b
∪
b
∖
a
b
89
eleq1
⊢
e
=
c
d
→
e
∈
Pred
T
A
×
B
a
b
↔
c
d
∈
Pred
T
A
×
B
a
b
90
eleq1
⊢
e
=
c
d
→
e
∈
Pred
R
A
a
∪
a
×
Pred
S
B
b
∪
b
∖
a
b
↔
c
d
∈
Pred
R
A
a
∪
a
×
Pred
S
B
b
∪
b
∖
a
b
91
89
90
bibi12d
⊢
e
=
c
d
→
e
∈
Pred
T
A
×
B
a
b
↔
e
∈
Pred
R
A
a
∪
a
×
Pred
S
B
b
∪
b
∖
a
b
↔
c
d
∈
Pred
T
A
×
B
a
b
↔
c
d
∈
Pred
R
A
a
∪
a
×
Pred
S
B
b
∪
b
∖
a
b
92
88
91
syl5ibrcom
⊢
a
∈
A
∧
b
∈
B
∧
c
∈
A
∧
d
∈
B
→
e
=
c
d
→
e
∈
Pred
T
A
×
B
a
b
↔
e
∈
Pred
R
A
a
∪
a
×
Pred
S
B
b
∪
b
∖
a
b
93
92
rexlimdvva
⊢
a
∈
A
∧
b
∈
B
→
∃
c
∈
A
∃
d
∈
B
e
=
c
d
→
e
∈
Pred
T
A
×
B
a
b
↔
e
∈
Pred
R
A
a
∪
a
×
Pred
S
B
b
∪
b
∖
a
b
94
37
93
biimtrid
⊢
a
∈
A
∧
b
∈
B
→
e
∈
A
×
B
→
e
∈
Pred
T
A
×
B
a
b
↔
e
∈
Pred
R
A
a
∪
a
×
Pred
S
B
b
∪
b
∖
a
b
95
23
36
94
pm5.21ndd
⊢
a
∈
A
∧
b
∈
B
→
e
∈
Pred
T
A
×
B
a
b
↔
e
∈
Pred
R
A
a
∪
a
×
Pred
S
B
b
∪
b
∖
a
b
96
95
eqrdv
⊢
a
∈
A
∧
b
∈
B
→
Pred
T
A
×
B
a
b
=
Pred
R
A
a
∪
a
×
Pred
S
B
b
∪
b
∖
a
b
97
11
21
96
vtocl2ga
⊢
X
∈
A
∧
Y
∈
B
→
Pred
T
A
×
B
X
Y
=
Pred
R
A
X
∪
X
×
Pred
S
B
Y
∪
Y
∖
X
Y