Metamath Proof Explorer


Theorem xpord2pred

Description: Calculate the predecessor class in frxp2 . (Contributed by Scott Fenton, 22-Aug-2024)

Ref Expression
Hypothesis xpord2.1 T=xy|xA×ByA×B1stxR1sty1stx=1sty2ndxS2ndy2ndx=2ndyxy
Assertion xpord2pred XAYBPredTA×BXY=PredRAXX×PredSBYYXY

Proof

Step Hyp Ref Expression
1 xpord2.1 T=xy|xA×ByA×B1stxR1sty1stx=1sty2ndxS2ndy2ndx=2ndyxy
2 opeq1 a=Xab=Xb
3 predeq3 ab=XbPredTA×Bab=PredTA×BXb
4 2 3 syl a=XPredTA×Bab=PredTA×BXb
5 predeq3 a=XPredRAa=PredRAX
6 sneq a=Xa=X
7 5 6 uneq12d a=XPredRAaa=PredRAXX
8 7 xpeq1d a=XPredRAaa×PredSBbb=PredRAXX×PredSBbb
9 2 sneqd a=Xab=Xb
10 8 9 difeq12d a=XPredRAaa×PredSBbbab=PredRAXX×PredSBbbXb
11 4 10 eqeq12d a=XPredTA×Bab=PredRAaa×PredSBbbabPredTA×BXb=PredRAXX×PredSBbbXb
12 opeq2 b=YXb=XY
13 predeq3 Xb=XYPredTA×BXb=PredTA×BXY
14 12 13 syl b=YPredTA×BXb=PredTA×BXY
15 predeq3 b=YPredSBb=PredSBY
16 sneq b=Yb=Y
17 15 16 uneq12d b=YPredSBbb=PredSBYY
18 17 xpeq2d b=YPredRAXX×PredSBbb=PredRAXX×PredSBYY
19 12 sneqd b=YXb=XY
20 18 19 difeq12d b=YPredRAXX×PredSBbbXb=PredRAXX×PredSBYYXY
21 14 20 eqeq12d b=YPredTA×BXb=PredRAXX×PredSBbbXbPredTA×BXY=PredRAXX×PredSBYYXY
22 predel ePredTA×BabeA×B
23 22 a1i aAbBePredTA×BabeA×B
24 eldifi ePredRAaa×PredSBbbabePredRAaa×PredSBbb
25 predss PredRAaA
26 25 a1i aAPredRAaA
27 snssi aAaA
28 26 27 unssd aAPredRAaaA
29 predss PredSBbB
30 29 a1i bBPredSBbB
31 snssi bBbB
32 30 31 unssd bBPredSBbbB
33 xpss12 PredRAaaAPredSBbbBPredRAaa×PredSBbbA×B
34 28 32 33 syl2an aAbBPredRAaa×PredSBbbA×B
35 34 sseld aAbBePredRAaa×PredSBbbeA×B
36 24 35 syl5 aAbBePredRAaa×PredSBbbabeA×B
37 elxp2 eA×BcAdBe=cd
38 opex abV
39 opex cdV
40 39 elpred abVcdPredTA×BabcdA×BcdTab
41 38 40 ax-mp cdPredTA×BabcdA×BcdTab
42 opelxpi cAdBcdA×B
43 42 adantl aAbBcAdBcdA×B
44 43 biantrurd aAbBcAdBcdTabcdA×BcdTab
45 1 xpord2lem cdTabcAdBaAbBcRac=adSbd=bcadb
46 eldif cdPredRAaa×PredSBbbabcdPredRAaa×PredSBbb¬cdab
47 opelxp cdPredRAaa×PredSBbbcPredRAaadPredSBbb
48 elun cPredRAaacPredRAaca
49 vex cV
50 49 elpred aVcPredRAacAcRa
51 50 elv cPredRAacAcRa
52 velsn cac=a
53 51 52 orbi12i cPredRAacacAcRac=a
54 48 53 bitri cPredRAaacAcRac=a
55 elun dPredSBbbdPredSBbdb
56 vex dV
57 56 elpred bVdPredSBbdBdSb
58 57 elv dPredSBbdBdSb
59 velsn dbd=b
60 58 59 orbi12i dPredSBbdbdBdSbd=b
61 55 60 bitri dPredSBbbdBdSbd=b
62 54 61 anbi12i cPredRAaadPredSBbbcAcRac=adBdSbd=b
63 47 62 bitri cdPredRAaa×PredSBbbcAcRac=adBdSbd=b
64 39 elsn cdabcd=ab
65 64 notbii ¬cdab¬cd=ab
66 df-ne cdab¬cd=ab
67 49 56 opthne cdabcadb
68 65 66 67 3bitr2i ¬cdabcadb
69 63 68 anbi12i cdPredRAaa×PredSBbb¬cdabcAcRac=adBdSbd=bcadb
70 46 69 bitri cdPredRAaa×PredSBbbabcAcRac=adBdSbd=bcadb
71 simprl aAbBcAdBcA
72 71 biantrurd aAbBcAdBcRacAcRa
73 72 orbi1d aAbBcAdBcRac=acAcRac=a
74 simprr aAbBcAdBdB
75 74 biantrurd aAbBcAdBdSbdBdSb
76 75 orbi1d aAbBcAdBdSbd=bdBdSbd=b
77 73 76 3anbi12d aAbBcAdBcRac=adSbd=bcadbcAcRac=adBdSbd=bcadb
78 df-3an cAcRac=adBdSbd=bcadbcAcRac=adBdSbd=bcadb
79 77 78 bitr2di aAbBcAdBcAcRac=adBdSbd=bcadbcRac=adSbd=bcadb
80 70 79 bitrid aAbBcAdBcdPredRAaa×PredSBbbabcRac=adSbd=bcadb
81 pm3.22 aAbBcAdBcAdBaAbB
82 81 biantrurd aAbBcAdBcRac=adSbd=bcadbcAdBaAbBcRac=adSbd=bcadb
83 df-3an cAdBaAbBcRac=adSbd=bcadbcAdBaAbBcRac=adSbd=bcadb
84 82 83 bitr4di aAbBcAdBcRac=adSbd=bcadbcAdBaAbBcRac=adSbd=bcadb
85 80 84 bitr2d aAbBcAdBcAdBaAbBcRac=adSbd=bcadbcdPredRAaa×PredSBbbab
86 45 85 bitrid aAbBcAdBcdTabcdPredRAaa×PredSBbbab
87 44 86 bitr3d aAbBcAdBcdA×BcdTabcdPredRAaa×PredSBbbab
88 41 87 bitrid aAbBcAdBcdPredTA×BabcdPredRAaa×PredSBbbab
89 eleq1 e=cdePredTA×BabcdPredTA×Bab
90 eleq1 e=cdePredRAaa×PredSBbbabcdPredRAaa×PredSBbbab
91 89 90 bibi12d e=cdePredTA×BabePredRAaa×PredSBbbabcdPredTA×BabcdPredRAaa×PredSBbbab
92 88 91 syl5ibrcom aAbBcAdBe=cdePredTA×BabePredRAaa×PredSBbbab
93 92 rexlimdvva aAbBcAdBe=cdePredTA×BabePredRAaa×PredSBbbab
94 37 93 biimtrid aAbBeA×BePredTA×BabePredRAaa×PredSBbbab
95 23 36 94 pm5.21ndd aAbBePredTA×BabePredRAaa×PredSBbbab
96 95 eqrdv aAbBPredTA×Bab=PredRAaa×PredSBbbab
97 11 21 96 vtocl2ga XAYBPredTA×BXY=PredRAXX×PredSBYYXY