| Step |
Hyp |
Ref |
Expression |
| 1 |
|
zringbas |
|
| 2 |
|
eqid |
|
| 3 |
1 2
|
unitcl |
|
| 4 |
|
zsubrg |
|
| 5 |
|
zgz |
|
| 6 |
5
|
ssriv |
|
| 7 |
|
gzsubrg |
|
| 8 |
|
eqid |
|
| 9 |
8
|
subsubrg |
|
| 10 |
7 9
|
ax-mp |
|
| 11 |
4 6 10
|
mpbir2an |
|
| 12 |
|
df-zring |
|
| 13 |
|
ressabs |
|
| 14 |
7 6 13
|
mp2an |
|
| 15 |
12 14
|
eqtr4i |
|
| 16 |
|
eqid |
|
| 17 |
15 16 2
|
subrguss |
|
| 18 |
11 17
|
ax-mp |
|
| 19 |
18
|
sseli |
|
| 20 |
8
|
gzrngunit |
|
| 21 |
20
|
simprbi |
|
| 22 |
19 21
|
syl |
|
| 23 |
3 22
|
jca |
|
| 24 |
|
zcn |
|
| 25 |
24
|
adantr |
|
| 26 |
|
simpr |
|
| 27 |
|
ax-1ne0 |
|
| 28 |
27
|
a1i |
|
| 29 |
26 28
|
eqnetrd |
|
| 30 |
|
fveq2 |
|
| 31 |
|
abs0 |
|
| 32 |
30 31
|
eqtrdi |
|
| 33 |
32
|
necon3i |
|
| 34 |
29 33
|
syl |
|
| 35 |
|
eldifsn |
|
| 36 |
25 34 35
|
sylanbrc |
|
| 37 |
|
simpl |
|
| 38 |
|
cnfldinv |
|
| 39 |
25 34 38
|
syl2anc |
|
| 40 |
|
zre |
|
| 41 |
40
|
adantr |
|
| 42 |
|
absresq |
|
| 43 |
41 42
|
syl |
|
| 44 |
26
|
oveq1d |
|
| 45 |
|
sq1 |
|
| 46 |
44 45
|
eqtrdi |
|
| 47 |
25
|
sqvald |
|
| 48 |
43 46 47
|
3eqtr3rd |
|
| 49 |
|
1cnd |
|
| 50 |
49 25 25 34
|
divmuld |
|
| 51 |
48 50
|
mpbird |
|
| 52 |
39 51
|
eqtrd |
|
| 53 |
52 37
|
eqeltrd |
|
| 54 |
|
cnfldbas |
|
| 55 |
|
cnfld0 |
|
| 56 |
|
cndrng |
|
| 57 |
54 55 56
|
drngui |
|
| 58 |
|
eqid |
|
| 59 |
12 57 2 58
|
subrgunit |
|
| 60 |
4 59
|
ax-mp |
|
| 61 |
36 37 53 60
|
syl3anbrc |
|
| 62 |
23 61
|
impbii |
|