Metamath Proof Explorer


Theorem zringunit

Description: The units of ZZ are the integers with norm 1 , i.e. 1 and -u 1 . (Contributed by Mario Carneiro, 5-Dec-2014) (Revised by AV, 10-Jun-2019)

Ref Expression
Assertion zringunit AUnitringAA=1

Proof

Step Hyp Ref Expression
1 zringbas =Basering
2 eqid Unitring=Unitring
3 1 2 unitcl AUnitringA
4 zsubrg SubRingfld
5 zgz xxi
6 5 ssriv i
7 gzsubrg iSubRingfld
8 eqid fld𝑠i=fld𝑠i
9 8 subsubrg iSubRingfldSubRingfld𝑠iSubRingfldi
10 7 9 ax-mp SubRingfld𝑠iSubRingfldi
11 4 6 10 mpbir2an SubRingfld𝑠i
12 df-zring ring=fld𝑠
13 ressabs iSubRingfldifld𝑠i𝑠=fld𝑠
14 7 6 13 mp2an fld𝑠i𝑠=fld𝑠
15 12 14 eqtr4i ring=fld𝑠i𝑠
16 eqid Unitfld𝑠i=Unitfld𝑠i
17 15 16 2 subrguss SubRingfld𝑠iUnitringUnitfld𝑠i
18 11 17 ax-mp UnitringUnitfld𝑠i
19 18 sseli AUnitringAUnitfld𝑠i
20 8 gzrngunit AUnitfld𝑠iAiA=1
21 20 simprbi AUnitfld𝑠iA=1
22 19 21 syl AUnitringA=1
23 3 22 jca AUnitringAA=1
24 zcn AA
25 24 adantr AA=1A
26 simpr AA=1A=1
27 ax-1ne0 10
28 27 a1i AA=110
29 26 28 eqnetrd AA=1A0
30 fveq2 A=0A=0
31 abs0 0=0
32 30 31 eqtrdi A=0A=0
33 32 necon3i A0A0
34 29 33 syl AA=1A0
35 eldifsn A0AA0
36 25 34 35 sylanbrc AA=1A0
37 simpl AA=1A
38 cnfldinv AA0invrfldA=1A
39 25 34 38 syl2anc AA=1invrfldA=1A
40 zre AA
41 40 adantr AA=1A
42 absresq AA2=A2
43 41 42 syl AA=1A2=A2
44 26 oveq1d AA=1A2=12
45 sq1 12=1
46 44 45 eqtrdi AA=1A2=1
47 25 sqvald AA=1A2=AA
48 43 46 47 3eqtr3rd AA=1AA=1
49 1cnd AA=11
50 49 25 25 34 divmuld AA=11A=AAA=1
51 48 50 mpbird AA=11A=A
52 39 51 eqtrd AA=1invrfldA=A
53 52 37 eqeltrd AA=1invrfldA
54 cnfldbas =Basefld
55 cnfld0 0=0fld
56 cndrng fldDivRing
57 54 55 56 drngui 0=Unitfld
58 eqid invrfld=invrfld
59 12 57 2 58 subrgunit SubRingfldAUnitringA0AinvrfldA
60 4 59 ax-mp AUnitringA0AinvrfldA
61 36 37 53 60 syl3anbrc AA=1AUnitring
62 23 61 impbii AUnitringAA=1